Spaces:
Sleeping
Sleeping
File size: 9,122 Bytes
4d92358 68fafaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import torch
from torch import nn, optim
from loss import GANLoss
class UnetBlock(nn.Module):
def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False,
innermost=False, outermost=False):
super().__init__()
self.outermost = outermost
if input_c is None: input_c = nf
downconv = nn.Conv2d(input_c, ni, kernel_size=4,
stride=2, padding=1, bias=False)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = nn.BatchNorm2d(ni)
uprelu = nn.ReLU(True)
upnorm = nn.BatchNorm2d(nf)
if outermost:
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
stride=2, padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4,
stride=2, padding=1, bias=False)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
stride=2, padding=1, bias=False)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if dropout: up += [nn.Dropout(0.5)]
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
class Unet(nn.Module):
def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64):
super().__init__()
unet_block = UnetBlock(num_filters * 8, num_filters * 8, innermost=True)
for _ in range(n_down - 5):
unet_block = UnetBlock(num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True)
out_filters = num_filters * 8
for _ in range(3):
unet_block = UnetBlock(out_filters // 2, out_filters, submodule=unet_block)
out_filters //= 2
self.model = UnetBlock(output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True)
def forward(self, x):
return self.model(x)
class PatchDiscriminator(nn.Module):
def __init__(self, input_c, num_filters=64, n_down=3):
super().__init__()
model = [self.get_layers(input_c, num_filters, norm=False)]
model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down - 1) else 2)
for i in range(n_down)] # the 'if' statement is taking care of not using
# stride of 2 for the last block in this loop
model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False,
act=False)] # Make sure to not use normalization or
# activation for the last layer of the model
self.model = nn.Sequential(*model)
def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True,
act=True): # when needing to make some repeatitive blocks of layers,
layers = [
nn.Conv2d(ni, nf, k, s, p, bias=not norm)] # it's always helpful to make a separate method for that purpose
if norm: layers += [nn.BatchNorm2d(nf)]
if act: layers += [nn.LeakyReLU(0.2, True)]
return nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
def init_weights(net, init='norm', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and 'Conv' in classname:
if init == 'norm':
nn.init.normal_(m.weight.data, mean=0.0, std=gain)
elif init == 'xavier':
nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init == 'kaiming':
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
elif 'BatchNorm2d' in classname:
nn.init.normal_(m.weight.data, 1., gain)
nn.init.constant_(m.bias.data, 0.)
net.apply(init_func)
print(f"model initialized with {init} initialization")
return net
def init_model(model, device):
model = model.to(device)
model = init_weights(model)
return model
class MainModel(nn.Module):
def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
beta1=0.5, beta2=0.999, lambda_L1=100.):
super().__init__()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.lambda_L1 = lambda_L1
if net_G is None:
self.net_G = init_model(Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device)
else:
self.net_G = net_G.to(self.device)
self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device)
self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
self.L1criterion = nn.L1Loss()
self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2))
self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2))
def set_requires_grad(self, model, requires_grad=True):
for p in model.parameters():
p.requires_grad = requires_grad
def setup_input(self, data):
self.L = data['L'].to(self.device)
self.ab = data['ab'].to(self.device)
def forward(self):
self.fake_color = self.net_G(self.L)
def backward_D(self):
fake_image = torch.cat([self.L, self.fake_color], dim=1)
fake_preds = self.net_D(fake_image.detach())
self.loss_D_fake = self.GANcriterion(fake_preds, False)
real_image = torch.cat([self.L, self.ab], dim=1)
real_preds = self.net_D(real_image)
self.loss_D_real = self.GANcriterion(real_preds, True)
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
self.loss_D.backward()
def backward_G(self):
fake_image = torch.cat([self.L, self.fake_color], dim=1)
fake_preds = self.net_D(fake_image)
self.loss_G_GAN = self.GANcriterion(fake_preds, True)
self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1
self.loss_G = self.loss_G_GAN + self.loss_G_L1
self.loss_G.backward()
def optimize(self):
self.forward()
self.net_D.train()
self.set_requires_grad(self.net_D, True)
self.opt_D.zero_grad()
self.backward_D()
self.opt_D.step()
self.net_G.train()
self.set_requires_grad(self.net_D, False)
self.opt_G.zero_grad()
self.backward_G()
self.opt_G.step()
class UNetAuto(nn.Module):
def __init__(self, in_channels=1, out_channels=2, features=[64, 128, 256, 512]):
super(UNetAuto, self).__init__()
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Encoder part
for feature in features:
self.encoder.append(self._block(in_channels, feature))
in_channels = feature
# Decoder part (Upsampling)
for feature in reversed(features):
self.decoder.append(nn.ConvTranspose2d(feature * 2, feature, kernel_size=2, stride=2))
self.decoder.append(self._block(feature * 2, feature))
# Final Convolution
self.bottleneck = self._block(features[-1], features[-1] * 2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x): #, t):
skip_connections = []
# Encode
for layer in self.encoder:
x = layer(x)
skip_connections.append(x)
x = self.pool(x)
# Bottleneck
x = self.bottleneck(x)
# Decode
skip_connections = skip_connections[::-1]
for idx in range(0, len(self.decoder), 2):
x = self.decoder[idx](x)
skip_connection = skip_connections[idx // 2]
x = torch.cat((x, skip_connection), dim=1) # Skip connection
x = self.decoder[idx + 1](x)
return self.final_conv(x)
def _block(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
class Autoencoder(nn.Module):
def __init__(self, model):
super(Autoencoder, self).__init__()
self.model = model
def forward(self, x): #, t):
return self.model(x)#, t) |