File size: 9,122 Bytes
4d92358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68fafaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import torch
from torch import nn, optim
from loss import GANLoss


class UnetBlock(nn.Module):
    def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False,
                 innermost=False, outermost=False):
        super().__init__()
        self.outermost = outermost
        if input_c is None: input_c = nf
        downconv = nn.Conv2d(input_c, ni, kernel_size=4,
                             stride=2, padding=1, bias=False)
        downrelu = nn.LeakyReLU(0.2, True)
        downnorm = nn.BatchNorm2d(ni)
        uprelu = nn.ReLU(True)
        upnorm = nn.BatchNorm2d(nf)

        if outermost:
            upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
                                        stride=2, padding=1)
            down = [downconv]
            up = [uprelu, upconv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4,
                                        stride=2, padding=1, bias=False)
            down = [downrelu, downconv]
            up = [uprelu, upconv, upnorm]
            model = down + up
        else:
            upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
                                        stride=2, padding=1, bias=False)
            down = [downrelu, downconv, downnorm]
            up = [uprelu, upconv, upnorm]
            if dropout: up += [nn.Dropout(0.5)]
            model = down + [submodule] + up
        self.model = nn.Sequential(*model)

    def forward(self, x):
        if self.outermost:
            return self.model(x)
        else:
            return torch.cat([x, self.model(x)], 1)


class Unet(nn.Module):
    def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64):
        super().__init__()
        unet_block = UnetBlock(num_filters * 8, num_filters * 8, innermost=True)
        for _ in range(n_down - 5):
            unet_block = UnetBlock(num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True)
        out_filters = num_filters * 8
        for _ in range(3):
            unet_block = UnetBlock(out_filters // 2, out_filters, submodule=unet_block)
            out_filters //= 2
        self.model = UnetBlock(output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True)

    def forward(self, x):
        return self.model(x)


class PatchDiscriminator(nn.Module):
    def __init__(self, input_c, num_filters=64, n_down=3):
        super().__init__()
        model = [self.get_layers(input_c, num_filters, norm=False)]
        model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down - 1) else 2)
                  for i in range(n_down)]  # the 'if' statement is taking care of not using
        # stride of 2 for the last block in this loop
        model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False,
                                  act=False)]  # Make sure to not use normalization or
        # activation for the last layer of the model
        self.model = nn.Sequential(*model)

    def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True,
                   act=True):  # when needing to make some repeatitive blocks of layers,
        layers = [
            nn.Conv2d(ni, nf, k, s, p, bias=not norm)]  # it's always helpful to make a separate method for that purpose
        if norm: layers += [nn.BatchNorm2d(nf)]
        if act: layers += [nn.LeakyReLU(0.2, True)]
        return nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)


def init_weights(net, init='norm', gain=0.02):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and 'Conv' in classname:
            if init == 'norm':
                nn.init.normal_(m.weight.data, mean=0.0, std=gain)
            elif init == 'xavier':
                nn.init.xavier_normal_(m.weight.data, gain=gain)
            elif init == 'kaiming':
                nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')

            if hasattr(m, 'bias') and m.bias is not None:
                nn.init.constant_(m.bias.data, 0.0)
        elif 'BatchNorm2d' in classname:
            nn.init.normal_(m.weight.data, 1., gain)
            nn.init.constant_(m.bias.data, 0.)

    net.apply(init_func)
    print(f"model initialized with {init} initialization")
    return net


def init_model(model, device):
    model = model.to(device)
    model = init_weights(model)
    return model


class MainModel(nn.Module):
    def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
                 beta1=0.5, beta2=0.999, lambda_L1=100.):
        super().__init__()

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.lambda_L1 = lambda_L1

        if net_G is None:
            self.net_G = init_model(Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device)
        else:
            self.net_G = net_G.to(self.device)
        self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device)
        self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
        self.L1criterion = nn.L1Loss()
        self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2))
        self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2))

    def set_requires_grad(self, model, requires_grad=True):
        for p in model.parameters():
            p.requires_grad = requires_grad

    def setup_input(self, data):
        self.L = data['L'].to(self.device)
        self.ab = data['ab'].to(self.device)

    def forward(self):
        self.fake_color = self.net_G(self.L)

    def backward_D(self):
        fake_image = torch.cat([self.L, self.fake_color], dim=1)
        fake_preds = self.net_D(fake_image.detach())
        self.loss_D_fake = self.GANcriterion(fake_preds, False)
        real_image = torch.cat([self.L, self.ab], dim=1)
        real_preds = self.net_D(real_image)
        self.loss_D_real = self.GANcriterion(real_preds, True)
        self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
        self.loss_D.backward()

    def backward_G(self):
        fake_image = torch.cat([self.L, self.fake_color], dim=1)
        fake_preds = self.net_D(fake_image)
        self.loss_G_GAN = self.GANcriterion(fake_preds, True)
        self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1
        self.loss_G = self.loss_G_GAN + self.loss_G_L1
        self.loss_G.backward()

    def optimize(self):
        self.forward()
        self.net_D.train()
        self.set_requires_grad(self.net_D, True)
        self.opt_D.zero_grad()
        self.backward_D()
        self.opt_D.step()

        self.net_G.train()
        self.set_requires_grad(self.net_D, False)
        self.opt_G.zero_grad()
        self.backward_G()
        self.opt_G.step()


class UNetAuto(nn.Module):

    def __init__(self, in_channels=1, out_channels=2, features=[64, 128, 256, 512]):

        super(UNetAuto, self).__init__()

        self.encoder = nn.ModuleList()

        self.decoder = nn.ModuleList()

        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)



        # Encoder part

        for feature in features:

            self.encoder.append(self._block(in_channels, feature))

            in_channels = feature



        # Decoder part (Upsampling)

        for feature in reversed(features):

            self.decoder.append(nn.ConvTranspose2d(feature * 2, feature, kernel_size=2, stride=2))

            self.decoder.append(self._block(feature * 2, feature))



        # Final Convolution

        self.bottleneck = self._block(features[-1], features[-1] * 2)

        self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)



    def forward(self, x): #, t):

        skip_connections = []



        # Encode

        for layer in self.encoder:

            x = layer(x)

            skip_connections.append(x)

            x = self.pool(x)



        # Bottleneck

        x = self.bottleneck(x)



        # Decode

        skip_connections = skip_connections[::-1]

        for idx in range(0, len(self.decoder), 2):

            x = self.decoder[idx](x)

            skip_connection = skip_connections[idx // 2]

            x = torch.cat((x, skip_connection), dim=1)  # Skip connection

            x = self.decoder[idx + 1](x)



        return self.final_conv(x)



    def _block(self, in_channels, out_channels):

        return nn.Sequential(

            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),

            nn.BatchNorm2d(out_channels),

            nn.ReLU(inplace=True),

            nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),

            nn.BatchNorm2d(out_channels),

            nn.ReLU(inplace=True),

        )
    

class Autoencoder(nn.Module):

    def __init__(self, model):

        super(Autoencoder, self).__init__()

        self.model = model



    def forward(self, x): #, t):

        return self.model(x)#, t)