Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ from utils import lab_to_rgb, build_res_unet, build_mobilenet_unet # Utility to
|
|
11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
|
13 |
# Hàm load models
|
14 |
-
def
|
15 |
unet = UNetAuto(in_channels=1, out_channels=2).to(device)
|
16 |
model = Autoencoder(unet).to(device)
|
17 |
model.load_state_dict(torch.load(auto_model_path, map_location=device))
|
@@ -44,7 +44,7 @@ mobilenet_model = load_model(
|
|
44 |
model_type='mobilenet'
|
45 |
)
|
46 |
|
47 |
-
|
48 |
|
49 |
# Transformations
|
50 |
def preprocess_image(image):
|
@@ -67,21 +67,21 @@ def colorize_image(input_image, mode):
|
|
67 |
with torch.no_grad():
|
68 |
resnet_output = resnet_model.net_G(grayscale.unsqueeze(0))
|
69 |
mobilenet_output = mobilenet_model.net_G(grayscale.unsqueeze(0))
|
70 |
-
|
71 |
|
72 |
# Resize outputs to match the original size
|
73 |
resnet_colorized = postprocess_image(grayscale, resnet_output, original_size)
|
74 |
mobilenet_colorized = postprocess_image(grayscale, mobilenet_output, original_size)
|
75 |
-
|
76 |
|
77 |
if mode == "ResNet":
|
78 |
return resnet_colorized, None, None
|
79 |
elif mode == "MobileNet":
|
80 |
return None, mobilenet_colorized, None
|
81 |
-
elif mode == "
|
82 |
-
return None, None,
|
83 |
elif mode == "Comparison":
|
84 |
-
return resnet_colorized, mobilenet_colorized,
|
85 |
|
86 |
|
87 |
# Gradio Interface
|
@@ -90,7 +90,7 @@ def gradio_interface():
|
|
90 |
# Input components
|
91 |
input_image = gr.Image(type="numpy", label="Upload an Image")
|
92 |
output_modes = gr.Radio(
|
93 |
-
choices=["ResNet", "MobileNet", "
|
94 |
value="ResNet",
|
95 |
label="Output Mode"
|
96 |
)
|
@@ -101,7 +101,7 @@ def gradio_interface():
|
|
101 |
with gr.Row(): # Place output images in a single row
|
102 |
resnet_output = gr.Image(label="Colorized Image (ResNet18)", visible=False)
|
103 |
mobilenet_output = gr.Image(label="Colorized Image (MobileNet)", visible=False)
|
104 |
-
|
105 |
|
106 |
# Output mode logic
|
107 |
def update_visibility(mode):
|
@@ -109,7 +109,7 @@ def gradio_interface():
|
|
109 |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
110 |
elif mode == "MobileNet":
|
111 |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
112 |
-
elif mode == "
|
113 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
114 |
elif mode == "Comparison":
|
115 |
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
@@ -118,14 +118,14 @@ def gradio_interface():
|
|
118 |
output_modes.change(
|
119 |
fn=update_visibility,
|
120 |
inputs=[output_modes],
|
121 |
-
outputs=[resnet_output, mobilenet_output,
|
122 |
)
|
123 |
|
124 |
# Submit logic
|
125 |
submit_button.click(
|
126 |
fn=colorize_image,
|
127 |
inputs=[input_image, output_modes],
|
128 |
-
outputs=[resnet_output, mobilenet_output,
|
129 |
)
|
130 |
|
131 |
return demo
|
|
|
11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
|
13 |
# Hàm load models
|
14 |
+
def load_unet_model(auto_model_path):
|
15 |
unet = UNetAuto(in_channels=1, out_channels=2).to(device)
|
16 |
model = Autoencoder(unet).to(device)
|
17 |
model.load_state_dict(torch.load(auto_model_path, map_location=device))
|
|
|
44 |
model_type='mobilenet'
|
45 |
)
|
46 |
|
47 |
+
unet_model = load_unet_model("weight/autoencoder.pt")
|
48 |
|
49 |
# Transformations
|
50 |
def preprocess_image(image):
|
|
|
67 |
with torch.no_grad():
|
68 |
resnet_output = resnet_model.net_G(grayscale.unsqueeze(0))
|
69 |
mobilenet_output = mobilenet_model.net_G(grayscale.unsqueeze(0))
|
70 |
+
unet_output = unet_model(grayscale.unsqueeze(0))
|
71 |
|
72 |
# Resize outputs to match the original size
|
73 |
resnet_colorized = postprocess_image(grayscale, resnet_output, original_size)
|
74 |
mobilenet_colorized = postprocess_image(grayscale, mobilenet_output, original_size)
|
75 |
+
unet_colorized = postprocess_image(grayscale, unet_output, original_size)
|
76 |
|
77 |
if mode == "ResNet":
|
78 |
return resnet_colorized, None, None
|
79 |
elif mode == "MobileNet":
|
80 |
return None, mobilenet_colorized, None
|
81 |
+
elif mode == "Unet":
|
82 |
+
return None, None, unet_colorized
|
83 |
elif mode == "Comparison":
|
84 |
+
return resnet_colorized, mobilenet_colorized, unet_colorized
|
85 |
|
86 |
|
87 |
# Gradio Interface
|
|
|
90 |
# Input components
|
91 |
input_image = gr.Image(type="numpy", label="Upload an Image")
|
92 |
output_modes = gr.Radio(
|
93 |
+
choices=["ResNet", "MobileNet", "Unet", "Comparison"],
|
94 |
value="ResNet",
|
95 |
label="Output Mode"
|
96 |
)
|
|
|
101 |
with gr.Row(): # Place output images in a single row
|
102 |
resnet_output = gr.Image(label="Colorized Image (ResNet18)", visible=False)
|
103 |
mobilenet_output = gr.Image(label="Colorized Image (MobileNet)", visible=False)
|
104 |
+
unet_output = gr.Image(label="Colorized Image (Unet)", visible=False)
|
105 |
|
106 |
# Output mode logic
|
107 |
def update_visibility(mode):
|
|
|
109 |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
110 |
elif mode == "MobileNet":
|
111 |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
112 |
+
elif mode == "Unet":
|
113 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
114 |
elif mode == "Comparison":
|
115 |
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
|
|
118 |
output_modes.change(
|
119 |
fn=update_visibility,
|
120 |
inputs=[output_modes],
|
121 |
+
outputs=[resnet_output, mobilenet_output, unet_output]
|
122 |
)
|
123 |
|
124 |
# Submit logic
|
125 |
submit_button.click(
|
126 |
fn=colorize_image,
|
127 |
inputs=[input_image, output_modes],
|
128 |
+
outputs=[resnet_output, mobilenet_output, unet_output]
|
129 |
)
|
130 |
|
131 |
return demo
|