File size: 2,317 Bytes
3933325
 
 
 
 
 
 
1df4f0c
 
 
 
 
3933325
 
316f95c
 
3933325
1df4f0c
 
 
 
 
4990d4a
 
dfc7ee9
316f95c
 
60e4f79
00b72fa
dbbf724
 
8569dd4
 
dfc7ee9
d557d40
 
 
 
3933325
7745907
 
 
 
1839808
3933325
 
 
1839808
3933325
 
1df4f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
3933325
 
 
 
2103519
7745907
2103519
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""Model hosted on Hugging face.

Based on: https://huggingface.co/docs/hub/spaces-sdks-docker-first-demo
"""

from fastapi import FastAPI, Request

# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# from transformers import T5Tokenizer, T5ForConditionalGeneration

import gpt4free
from gpt4free import Provider, forefront


token_size_limit = None

# FROM: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+Thomas%21+How+are+you%3F

# LAST USED
# tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
# model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")

# tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-1B-distill")
# model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-1B-distill")
# token_size_limit = 128

# T5 model can use "any" sequence lenghth, but memory usage is O(L^2).
# tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
# model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small")
# tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
# model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
# tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
# model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
token_size_limit = 512

# Too large for 16GB
# tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xl")
# model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl")


app = FastAPI()


# { msg: string, temperature: float, max_length: number }
@app.post('/reply')
async def Reply(req: Request):
    request = await req.json()
    msg = request.get('msg')
    print(f'MSG: {msg}')

    # Hugging face
    # input_ids = tokenizer(msg, return_tensors='pt').input_ids  # .to('cuda')
    # output = model.generate(
    #     input_ids[:, -token_size_limit:],
    #     do_sample=True,
    #     temperature=request.get('temperature', 0.9),
    #     max_length=request.get('max_length', 100),
    # )
    # reply = tokenizer.batch_decode(output)[0]

    # gpt4free
    # usage theb
    reply = gpt4free.Completion.create(Provider.Theb, prompt=msg)

    print(f'REPLY: {reply}')
    return {'reply': reply}


@app.get("/")
def read_root():
    return {"Hello": "World!"}