import os import torch from huggingface_hub import InferenceClient import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser # Load HF_TOKEN securely hf_token = os.getenv("HF_TOKEN") # Set up the Hugging Face Inference Client with the Bearer token client = InferenceClient(api_key=hf_token) # Model paths and IDs model_id = "mistralai/Mistral-7B-Instruct-v0.3" bart_model_path = "ChijoTheDatascientist/summarization-model" # Load BART model for summarization device = torch.device('cpu') bart_tokenizer = AutoTokenizer.from_pretrained(bart_model_path) bart_model = AutoModelForSeq2SeqLM.from_pretrained(bart_model_path).to(device) @st.cache_data def summarize_review(review_text): inputs = bart_tokenizer(review_text, max_length=1024, truncation=True, return_tensors="pt") summary_ids = bart_model.generate(inputs["input_ids"], max_length=40, min_length=10, length_penalty=2.0, num_beams=8, early_stopping=True) summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary def generate_response(system_message, user_input, chat_history, max_new_tokens=128): try: # Prepare the messages for the Hugging Face Inference API messages = [{"role": "user", "content": user_input}] # Call the Inference API completion = client.chat.completions.create( model=model_id, messages=messages, max_tokens=max_new_tokens, ) # Get the response from the API response = completion.choices[0].message["content"] return response except Exception as e: return f"Error generating response: {e}" # Streamlit app configuration st.set_page_config(page_title="Insight Snap & Summarizer") st.title("Insight Snap & Summarizer") st.markdown(""" - Use specific keywords in your queries to get targeted responses: - **"summarize"**: To summarize customer reviews. - **"Feedback or insights"**: Get actionable business insights based on feedback. """) # Initialize session state for chat history if "chat_history" not in st.session_state: st.session_state.chat_history = [] # Chat interface user_input = st.text_area("Enter customer reviews or a question:") if st.button("Submit"): if user_input: # Summarize if the query is feedback-related if "summarize" in user_input.lower(): summary = summarize_review(user_input) st.markdown(f"**Summary:** \n{summary}") elif "insight" in user_input.lower() or "feedback" in user_input.lower(): system_message = ( "You are a helpful assistant providing actionable insights " "from customer feedback to help businesses improve their services." ) # Use the last summarized text if available last_summary = st.session_state.get("last_summary", "") query_input = last_summary if last_summary else user_input response = generate_response(system_message, query_input, st.session_state.chat_history) if response: # Update chat history st.session_state.chat_history.append({"role": "user", "content": user_input}) st.session_state.chat_history.append({"role": "assistant", "content": response}) st.markdown(f"**Insight:** \n{response}") else: st.warning("No response generated. Please try again later.") else: st.warning("Please specify if you want to 'summarize' or get 'insights'.") # Store the last summary for insights if "summarize" in user_input.lower(): st.session_state["last_summary"] = summary else: st.warning("Please enter customer reviews or ask for insights.")