import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Chillyblast/Bart_Summarization") model = AutoModelForSeq2SeqLM.from_pretrained("Chillyblast/Bart_Summarization") # Create a pipeline for text summarization summarizer = pipeline("summarization", model=model, tokenizer=tokenizer) # Streamlit app st.title("Text Summarization App") # Create a text input box for user input dialogue = st.text_area("Enter the input:") if dialogue: # Perform inference summary = summarizer(dialogue, max_length=500, min_length=300, do_sample=False) # Display the summary st.write("Summary:", summary[0]['summary_text'])