File size: 961 Bytes
0b6d7d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Initialize the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
model = AutoModelForCausalLM.from_pretrained('gpt2-large')

def generate_blog(topic, max_length=500, num_return_sequences=1):
    # Encode the topic as input IDs
    input_ids = tokenizer.encode(topic, return_tensors='pt')
    
    # Generate the blog text
    outputs = model.generate(
        input_ids,
        max_length=max_length,
        num_return_sequences=num_return_sequences,
        no_repeat_ngram_size=2,
        early_stopping=True
    )

    # Decode the generated IDs to text
    generated_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
    return generated_texts

# Example usage
topic = input(str("Enter the topic:"))
generated_blogs = generate_blog(topic)

for i, blog in enumerate(generated_blogs):
    print(f"Blog {i+1}:\n{blog}\n")