Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
|
|
|
2 |
import torch
|
3 |
|
4 |
# Initialize the tokenizer and model
|
@@ -22,9 +23,15 @@ def generate_blog(topic, max_length=500, num_return_sequences=1):
|
|
22 |
generated_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
23 |
return generated_texts
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import GPT2LMHeadModel, AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
# Initialize the tokenizer and model
|
|
|
23 |
generated_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
24 |
return generated_texts
|
25 |
|
26 |
+
# Streamlit UI
|
27 |
+
st.title("Blog Generator")
|
28 |
+
topic = st.text_input("Enter the topic:")
|
29 |
|
30 |
+
if st.button("Generate Blog"):
|
31 |
+
if topic:
|
32 |
+
generated_blogs = generate_blog(topic)
|
33 |
+
for i, blog in enumerate(generated_blogs):
|
34 |
+
st.subheader(f"Blog {i+1}")
|
35 |
+
st.write(blog)
|
36 |
+
else:
|
37 |
+
st.write("Please enter a topic to generate a blog.")
|