Update app.py (#1)
Browse files- Update app.py (6b6eb54081619bdccba0f01ce657214fc719a357)
Co-authored-by: Umair Mir <[email protected]>
app.py
CHANGED
@@ -1,64 +1,81 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
""
|
44 |
-
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
import gradio as gr
|
5 |
+
from huggingface_hub import login
|
6 |
+
import requests
|
7 |
+
from huggingface_hub import HfApi
|
8 |
|
9 |
+
# Load environment variables
|
10 |
+
import os
|
11 |
+
from huggingface_hub import HfApi
|
|
|
12 |
|
13 |
+
hf_token = os.getenv("hf_token")
|
14 |
+
api = HfApi(token=hf_token)
|
15 |
|
16 |
+
# Load embedding model
|
17 |
+
embed_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# API call function to Zephyr model
|
20 |
+
def call_zephyr_api(prompt):
|
21 |
+
url = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
22 |
+
headers = {
|
23 |
+
"Authorization": f"Bearer {hf_token}",
|
24 |
+
"Content-Type": "application/json"
|
25 |
+
}
|
26 |
+
payload = {
|
27 |
+
"inputs": prompt,
|
28 |
+
"parameters": {
|
29 |
+
"max_new_tokens": 512,
|
30 |
+
"temperature": 0.7
|
31 |
+
}
|
32 |
+
}
|
33 |
+
try:
|
34 |
+
response = requests.post(url, headers=headers, json=payload)
|
35 |
+
response.raise_for_status()
|
36 |
+
return response.json()[0]["generated_text"]
|
37 |
+
except Exception as e:
|
38 |
+
return f"⚠️ Error generating suggestions: {e}"
|
39 |
|
40 |
+
# Resume matcher function
|
41 |
+
def resume_matcher_and_advisor(resume_text, job_desc):
|
42 |
+
embeddings = embed_model.encode([resume_text, job_desc], convert_to_tensor=True)
|
43 |
+
similarity_score = util.pytorch_cos_sim(embeddings[0], embeddings[1]).item()
|
44 |
+
res_score = round(similarity_score * 100, 2)
|
45 |
|
46 |
+
if res_score > 85:
|
47 |
+
suggestions = "✅ This resume is a good fit for the job description!"
|
48 |
+
else:
|
49 |
+
prompt = f"""<|system|>
|
50 |
+
You are a professional resume reviewer.
|
51 |
+
<|user|>
|
52 |
+
Compare the following resume with the job description and give bullet-point suggestions to improve the resume so that it better fits the job requirements.
|
53 |
+
- Be critical and constructive.
|
54 |
+
- Do NOT assume the resume matches the job.
|
55 |
+
- DO NOT rewrite the resume or job.
|
56 |
+
- DO NOT hallucinate skills.
|
57 |
+
Job Description:
|
58 |
+
{job_desc}
|
59 |
+
Resume:
|
60 |
+
{resume_text}
|
61 |
+
</s>"""
|
62 |
+
suggestions = call_zephyr_api(prompt)
|
63 |
|
64 |
+
return res_score, suggestions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Launch Gradio interface
|
67 |
+
iface = gr.Interface(
|
68 |
+
fn=resume_matcher_and_advisor,
|
69 |
+
inputs=[
|
70 |
+
gr.Textbox(lines=15, label="Paste Resume Text"),
|
71 |
+
gr.Textbox(lines=15, label="Paste Job Description")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
],
|
73 |
+
outputs=[
|
74 |
+
gr.Number(label="Similarity Score (%)"),
|
75 |
+
gr.Textbox(label="Improvement Suggestions")
|
76 |
+
],
|
77 |
+
title="🧠 Resume Matcher & Advisor",
|
78 |
+
description="Paste a resume and job description. Get a match score and improvement suggestions."
|
79 |
)
|
80 |
|
81 |
+
iface.launch(share=True)
|
|
|
|