updated app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import fitz
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
+
import pandas as pd
|
8 |
+
import tempfile
|
9 |
+
|
10 |
+
def extract_text_images(
|
11 |
+
pdf_path: str, output_folder: str,
|
12 |
+
minimum_font_size: int,
|
13 |
+
extraction_type: str = 'both'
|
14 |
+
) -> dict:
|
15 |
+
"""
|
16 |
+
Extracts text and/or images from a PDF and organizes them by pages.
|
17 |
+
|
18 |
+
Params
|
19 |
+
-------
|
20 |
+
pdf_path: str
|
21 |
+
Path to the input PDF file.
|
22 |
+
output_folder: str
|
23 |
+
Path to the output folder where extracted data will be saved.
|
24 |
+
minimum_font_size: int
|
25 |
+
Minimum font size below which the text will be ignored.
|
26 |
+
extraction_type: str
|
27 |
+
Type of extraction, either 'text', 'images', or 'both'.
|
28 |
+
|
29 |
+
Returns
|
30 |
+
-------
|
31 |
+
dict
|
32 |
+
The extracted data organized by pages.
|
33 |
+
"""
|
34 |
+
if not os.path.exists(output_folder):
|
35 |
+
os.makedirs(output_folder)
|
36 |
+
|
37 |
+
extraction_data = []
|
38 |
+
|
39 |
+
pdf_document = fitz.open(pdf_path)
|
40 |
+
|
41 |
+
for page_number in range(pdf_document.page_count):
|
42 |
+
page = pdf_document.load_page(page_number)
|
43 |
+
elements = []
|
44 |
+
|
45 |
+
if extraction_type in ('text', 'both'):
|
46 |
+
text_blocks = page.get_text("dict")["blocks"]
|
47 |
+
lines = {}
|
48 |
+
|
49 |
+
for block in text_blocks:
|
50 |
+
if block["type"] == 0:
|
51 |
+
for line in block["lines"]:
|
52 |
+
for span in line["spans"]:
|
53 |
+
font_size = span["size"]
|
54 |
+
top = span["bbox"][1]
|
55 |
+
|
56 |
+
if font_size < minimum_font_size:
|
57 |
+
continue
|
58 |
+
|
59 |
+
if top not in lines:
|
60 |
+
lines[top] = []
|
61 |
+
lines[top].append(span)
|
62 |
+
|
63 |
+
for top in sorted(lines.keys()):
|
64 |
+
line = lines[top]
|
65 |
+
line_text = " ".join([span['text'] for span in line])
|
66 |
+
|
67 |
+
elements.append({
|
68 |
+
'type': 'text',
|
69 |
+
'font_size': line[0]['size'],
|
70 |
+
'page': page_number + 1,
|
71 |
+
'content': line_text,
|
72 |
+
'x0': line[0]['bbox'][0],
|
73 |
+
'top': top,
|
74 |
+
})
|
75 |
+
|
76 |
+
if extraction_type in ('images', 'both'):
|
77 |
+
image_list = page.get_images(full=True)
|
78 |
+
|
79 |
+
for img_index, img in enumerate(image_list):
|
80 |
+
xref = img[0]
|
81 |
+
base_image = pdf_document.extract_image(xref)
|
82 |
+
image_bytes = base_image["image"]
|
83 |
+
image_filename = os.path.join(
|
84 |
+
output_folder,
|
85 |
+
f"page_{page_number + 1}_img_{img_index + 1}.png"
|
86 |
+
)
|
87 |
+
|
88 |
+
with open(image_filename, "wb") as img_file:
|
89 |
+
img_file.write(image_bytes)
|
90 |
+
|
91 |
+
img_rect = page.get_image_bbox(img)
|
92 |
+
elements.append({
|
93 |
+
'type': 'image',
|
94 |
+
'page': page_number + 1,
|
95 |
+
'path': image_filename,
|
96 |
+
'x0': img_rect.x0,
|
97 |
+
'top': img_rect.y0
|
98 |
+
})
|
99 |
+
|
100 |
+
elements.sort(key=lambda e: (e['top'], e['x0']))
|
101 |
+
|
102 |
+
page_content = []
|
103 |
+
for element in elements:
|
104 |
+
if element['type'] == 'text':
|
105 |
+
if page_content and page_content[-1]['type'] == 'text':
|
106 |
+
page_content[-1]['content'] += " " + element['content']
|
107 |
+
else:
|
108 |
+
page_content.append({
|
109 |
+
'type': 'text',
|
110 |
+
'content': element['content']
|
111 |
+
})
|
112 |
+
elif element['type'] == 'image':
|
113 |
+
page_content.append({
|
114 |
+
'type': 'image',
|
115 |
+
'path': element['path']
|
116 |
+
})
|
117 |
+
|
118 |
+
extraction_data.append({
|
119 |
+
'page': page_number + 1,
|
120 |
+
'content': page_content
|
121 |
+
})
|
122 |
+
|
123 |
+
pdf_document.close()
|
124 |
+
|
125 |
+
return extraction_data
|
126 |
+
|
127 |
+
def convert_to_xlsx(data: dict) -> BytesIO:
|
128 |
+
rows = []
|
129 |
+
|
130 |
+
for item in data:
|
131 |
+
page_number = item['page']
|
132 |
+
content_list = item['content']
|
133 |
+
|
134 |
+
for content in content_list:
|
135 |
+
if content['type'] == 'text':
|
136 |
+
rows.append({
|
137 |
+
'Page': page_number,
|
138 |
+
'Content': content['content']
|
139 |
+
})
|
140 |
+
elif content['type'] == 'image':
|
141 |
+
rows.append({
|
142 |
+
'Page': page_number,
|
143 |
+
'Content': f"[Image: {content['path']}]"
|
144 |
+
})
|
145 |
+
|
146 |
+
df = pd.DataFrame(rows)
|
147 |
+
|
148 |
+
output = BytesIO()
|
149 |
+
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
150 |
+
df.to_excel(writer, index=False, sheet_name='Extraction')
|
151 |
+
|
152 |
+
output.seek(0)
|
153 |
+
return output
|
154 |
+
|
155 |
+
def main():
|
156 |
+
st.markdown("<h1 style='text-align: center; color: blue;'>PDF DATA SNACHER:PAGEWISE</h1>", unsafe_allow_html=True)
|
157 |
+
st.markdown("<h3 style='text-align: center;color: brown;'>Extract valuable text and images from PDFs effortlessly and Convert PDFs into editable text and high-quality images </h3>", unsafe_allow_html=True)
|
158 |
+
|
159 |
+
st.sidebar.markdown('<p class="sidebar-header">PDF PREVIEW</p>', unsafe_allow_html=True)
|
160 |
+
|
161 |
+
pdf_file = st.file_uploader("Upload PDF", type="pdf")
|
162 |
+
|
163 |
+
if pdf_file is not None:
|
164 |
+
num_pages_to_preview = st.sidebar.slider(
|
165 |
+
"Select number of pages to preview:",
|
166 |
+
min_value=1, max_value=5, value=1
|
167 |
+
)
|
168 |
+
|
169 |
+
pdf_document = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
170 |
+
for page_num in range(min(num_pages_to_preview, pdf_document.page_count)):
|
171 |
+
page = pdf_document.load_page(page_num)
|
172 |
+
pix = page.get_pixmap()
|
173 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
174 |
+
st.sidebar.image(image, caption=f"Page {page_num + 1} Preview", use_column_width=True)
|
175 |
+
|
176 |
+
st.info("You can select **only text** or **only images** or **text and images both** to extract form pdf")
|
177 |
+
extraction_type = st.selectbox(
|
178 |
+
"Choose extraction type:",
|
179 |
+
("text", "images", "both")
|
180 |
+
)
|
181 |
+
|
182 |
+
st.info("Minimum font size is the size below which size, the text will get ignored for extraction")
|
183 |
+
minimum_font_size = st.number_input(
|
184 |
+
"Minimum font size to extract:",
|
185 |
+
min_value=1, value=2
|
186 |
+
)
|
187 |
+
|
188 |
+
if st.button("Start Extraction"):
|
189 |
+
if pdf_file is not None:
|
190 |
+
with tempfile.TemporaryDirectory() as output_folder:
|
191 |
+
temp_pdf_path = os.path.join(output_folder, pdf_file.name)
|
192 |
+
with open(temp_pdf_path, "wb") as f:
|
193 |
+
f.write(pdf_file.getvalue())
|
194 |
+
|
195 |
+
extraction_data = extract_text_images(
|
196 |
+
temp_pdf_path,
|
197 |
+
output_folder,
|
198 |
+
minimum_font_size,
|
199 |
+
extraction_type
|
200 |
+
)
|
201 |
+
|
202 |
+
st.json(extraction_data)
|
203 |
+
|
204 |
+
xlsx_data = convert_to_xlsx(extraction_data)
|
205 |
+
|
206 |
+
col1, col2 = st.columns(2)
|
207 |
+
|
208 |
+
with col1:
|
209 |
+
st.download_button(
|
210 |
+
label="Download JSON",
|
211 |
+
data=json.dumps(extraction_data, ensure_ascii=False, indent=4).encode('utf-8'),
|
212 |
+
file_name='extraction_data.json',
|
213 |
+
mime='application/json')
|
214 |
+
|
215 |
+
with col2:
|
216 |
+
st.download_button(
|
217 |
+
label="Download XLSX",
|
218 |
+
data=xlsx_data,
|
219 |
+
file_name='extraction_data.xlsx',
|
220 |
+
mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
|
221 |
+
|
222 |
+
else:
|
223 |
+
st.error("Please upload a PDF file.")
|
224 |
+
|
225 |
+
st.markdown(
|
226 |
+
"""
|
227 |
+
<style>
|
228 |
+
.footer {
|
229 |
+
position: fixed;
|
230 |
+
bottom: 0;
|
231 |
+
left: 0;
|
232 |
+
width: 100%;
|
233 |
+
background-color: #F0F0F0;
|
234 |
+
font-family:cursive;
|
235 |
+
text-align: right;
|
236 |
+
padding: 5px 0;
|
237 |
+
font-size:20px;
|
238 |
+
font-weight: bold;
|
239 |
+
color: #FF0000;
|
240 |
+
}
|
241 |
+
</style>
|
242 |
+
<div class="footer">
|
243 |
+
CREATED BY: CHINMAY BHALERAO
|
244 |
+
</div>
|
245 |
+
""",
|
246 |
+
unsafe_allow_html=True
|
247 |
+
)
|
248 |
+
|
249 |
+
if __name__ == "__main__":
|
250 |
+
main()
|