Spaces:
Sleeping
Sleeping
import gensim | |
import gensim.models | |
from gensim.models import KeyedVectors | |
import gensim.downloader as api | |
import fasttext | |
import gradio as gr | |
model = fasttext.load_model("fasttext_model_ina.bin") | |
# Test Model Locally | |
#print(model.get_nearest_neighbors("ndalama")) # Example Chichewa word | |
# Define function for Gradio | |
def find_similar_words(wordz, top_n=10): | |
words=model.get_nearest_neighbors(wordz) | |
try: | |
text='' | |
for word in words: | |
text= text +"\n" +str(word[1]) + " Similarity score : "+ str(word[0]) | |
return text | |
except KeyError: | |
return f"'{word}' not found in the vocabulary!" | |
# Gradio UI | |
demo = gr.Interface( | |
fn=find_similar_words, | |
inputs=gr.Textbox(label="Enter a Word"), | |
outputs="text", | |
title="Chichewa Word Embeddings Explorer", | |
description="Find similar words using a pre-trained word embedding model.", | |
) | |
# Launch for local testing | |
demo.launch() | |