Spaces:
Sleeping
Sleeping
File size: 5,853 Bytes
d4cef17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
from typing import List, Tuple
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import note_seq
from matplotlib.figure import Figure
from numpy import ndarray
import torch
from constants import GM_INSTRUMENTS, SAMPLE_RATE
from string_to_notes import token_sequence_to_note_sequence
from model import get_model_and_tokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the tokenizer and the model
model, tokenizer = get_model_and_tokenizer()
def create_seed_string(genre: str = "OTHER") -> str:
if genre == "RANDOM":
seed_string = "PIECE_START"
else:
seed_string = f"PIECE_START GENRE={genre} TRACK_START"
return seed_string
def get_instruments(text_sequence: str) -> List[str]:
"""
Extracts the list of instruments from a text sequence.
Args:
text_sequence (str): The text sequence.
Returns:
List[str]: The list of instruments.
"""
instruments = []
parts = text_sequence.split()
for part in parts:
if part.startswith("INST="):
if part[5:] == "DRUMS":
instruments.append("Drums")
else:
index = int(part[5:])
instruments.append(GM_INSTRUMENTS[index])
return instruments
def generate_new_instrument(seed: str, temp: float = 0.75) -> str:
seed_length = len(tokenizer.encode(seed))
while True:
# Encode the conditioning tokens.
input_ids = tokenizer.encode(seed, return_tensors="pt")
# Move the input_ids tensor to the same device as the model
input_ids = input_ids.to(model.device)
# Generate more tokens.
eos_token_id = tokenizer.encode("TRACK_END")[0]
generated_ids = model.generate(
input_ids,
max_new_tokens=2048,
do_sample=True,
temperature=temp,
eos_token_id=eos_token_id,
)
generated_sequence = tokenizer.decode(generated_ids[0])
# Check if the generated sequence contains "NOTE_ON" beyond the seed
new_generated_sequence = tokenizer.decode(generated_ids[0][seed_length:])
if "NOTE_ON" in new_generated_sequence:
return generated_sequence
def get_outputs_from_string(
generated_sequence: str, qpm: int = 120
) -> Tuple[ndarray, str, Figure, str, str]:
instruments = get_instruments(generated_sequence)
instruments_str = "\n".join(f"- {instrument}" for instrument in instruments)
note_sequence = token_sequence_to_note_sequence(generated_sequence, qpm=qpm)
synth = note_seq.fluidsynth
array_of_floats = synth(note_sequence, sample_rate=SAMPLE_RATE)
int16_data = note_seq.audio_io.float_samples_to_int16(array_of_floats)
fig = note_seq.plot_sequence(note_sequence, show_figure=False)
num_tokens = str(len(generated_sequence.split()))
audio = gr.make_waveform((SAMPLE_RATE, int16_data))
note_seq.note_sequence_to_midi_file(note_sequence, "midi_ouput.mid")
return audio, "midi_ouput.mid", fig, instruments_str, num_tokens
def remove_last_instrument(
text_sequence: str, qpm: int = 120
) -> Tuple[ndarray, str, Figure, str, str, str]:
# We split the song into tracks by splitting on 'TRACK_START'
tracks = text_sequence.split("TRACK_START")
# We keep all tracks except the last one
modified_tracks = tracks[:-1]
# We join the tracks back together, adding back the 'TRACK_START' that was removed by split
new_song = "TRACK_START".join(modified_tracks)
if len(tracks) == 2:
# There is only one instrument, so start from scratch
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
text_sequence=new_song
)
elif len(tracks) == 1:
# No instrument so start from empty sequence
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
text_sequence=""
)
else:
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
new_song, qpm
)
return audio, midi_file, fig, instruments_str, new_song, num_tokens
def regenerate_last_instrument(
text_sequence: str, qpm: int = 120
) -> Tuple[ndarray, str, Figure, str, str, str]:
last_inst_index = text_sequence.rfind("INST=")
if last_inst_index == -1:
# No instrument so start from empty sequence
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
text_sequence="", qpm=qpm
)
else:
# Take it from the last instrument and continue generation
next_space_index = text_sequence.find(" ", last_inst_index)
new_seed = text_sequence[:next_space_index]
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
text_sequence=new_seed, qpm=qpm
)
return audio, midi_file, fig, instruments_str, new_song, num_tokens
def change_tempo(
text_sequence: str, qpm: int
) -> Tuple[ndarray, str, Figure, str, str, str]:
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
text_sequence, qpm=qpm
)
return audio, midi_file, fig, instruments_str, text_sequence, num_tokens
def generate_song(
genre: str = "OTHER",
temp: float = 0.75,
text_sequence: str = "",
qpm: int = 120,
) -> Tuple[ndarray, str, Figure, str, str, str]:
if text_sequence == "":
seed_string = create_seed_string(genre)
else:
seed_string = text_sequence
generated_sequence = generate_new_instrument(seed=seed_string, temp=temp)
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
generated_sequence, qpm
)
return audio, midi_file, fig, instruments_str, generated_sequence, num_tokens
|