File size: 4,960 Bytes
10e9b7d eccf8e4 3c4371f 10e9b7d d989cfe 8dce943 0412ce8 8dce943 3db6293 e80aab9 8dce943 d989cfe 0412ce8 8dce943 0412ce8 d989cfe 8dce943 83b4ffd 7e4a06b 83b4ffd 7e4a06b 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 31243f4 8dce943 31243f4 8dce943 36ed51a 3c4371f eccf8e4 31243f4 7d65c66 31243f4 83b4ffd 8dce943 d989cfe e80aab9 7d65c66 31243f4 7d65c66 31243f4 8dce943 31243f4 8dce943 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 7d65c66 8dce943 31243f4 8dce943 e80aab9 83b4ffd 0ee0419 e514fd7 8dce943 e514fd7 e80aab9 7e4a06b 31243f4 9088b99 7d65c66 8dce943 31243f4 e80aab9 8dce943 3c4371f 83b4ffd 3c4371f 8dce943 3c4371f 83b4ffd 7d65c66 8dce943 7d65c66 83b4ffd 8dce943 83b4ffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents.models import InferenceClientModel
from smolagents.agents import ToolCallingAgent
from smolagents.tools import DuckDuckGoSearchTool, WebSearchTool, WikipediaSearchTool
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def create_agent():
model = InferenceClientModel(repo_id="HuggingFaceH4/zephyr-7b-beta")
wiki_tool = WikipediaSearchTool()
duck_tool = DuckDuckGoSearchTool()
web_tool = WebSearchTool()
agent = ToolCallingAgent(
tools=[wiki_tool, duck_tool, web_tool],
model=model
)
return agent
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = create_agent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"(Agent error: {e})"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
results_df = pd.DataFrame(results_log)
return status_message, results_df
with gr.Blocks() as demo:
gr.Markdown("# SmolAgent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
- Clone and modify this space to improve your agent logic as you see fit.
- Log in to your Hugging Face account with the button below.
- Click 'Run Evaluation & Submit All Answers' to begin.
Disclaimer: Submission may take a while depending on the number of questions and agent speed.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST not found (running locally?)")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID not found")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for SmolAgent Evaluation...")
demo.launch(debug=True, share=False)
|