File size: 4,960 Bytes
10e9b7d
 
eccf8e4
3c4371f
10e9b7d
d989cfe
8dce943
0412ce8
8dce943
3db6293
e80aab9
8dce943
d989cfe
0412ce8
 
 
8dce943
0412ce8
d989cfe
8dce943
 
83b4ffd
 
 
7e4a06b
83b4ffd
7e4a06b
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
8dce943
31243f4
 
8dce943
36ed51a
3c4371f
eccf8e4
31243f4
7d65c66
31243f4
 
83b4ffd
8dce943
d989cfe
e80aab9
7d65c66
 
31243f4
 
 
 
 
 
7d65c66
 
 
31243f4
8dce943
31243f4
 
 
 
8dce943
 
 
 
 
e80aab9
 
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
 
7d65c66
8dce943
31243f4
8dce943
e80aab9
 
83b4ffd
0ee0419
e514fd7
 
8dce943
 
 
 
e514fd7
e80aab9
7e4a06b
31243f4
9088b99
7d65c66
8dce943
31243f4
 
 
e80aab9
 
 
8dce943
3c4371f
83b4ffd
3c4371f
 
8dce943
3c4371f
83b4ffd
 
7d65c66
8dce943
 
7d65c66
83b4ffd
8dce943
 
83b4ffd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import gradio as gr
import requests
import pandas as pd

from smolagents.models import InferenceClientModel
from smolagents.agents import ToolCallingAgent
from smolagents.tools import DuckDuckGoSearchTool, WebSearchTool, WikipediaSearchTool

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

def create_agent():
    model = InferenceClientModel(repo_id="HuggingFaceH4/zephyr-7b-beta")
    wiki_tool = WikipediaSearchTool()
    duck_tool = DuckDuckGoSearchTool()
    web_tool = WebSearchTool()
    agent = ToolCallingAgent(
        tools=[wiki_tool, duck_tool, web_tool],
        model=model
    )
    return agent

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
    else:
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = create_agent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"(Agent error: {e})"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

with gr.Blocks() as demo:
    gr.Markdown("# SmolAgent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        - Clone and modify this space to improve your agent logic as you see fit.
        - Log in to your Hugging Face account with the button below.
        - Click 'Run Evaluation & Submit All Answers' to begin.
        Disclaimer: Submission may take a while depending on the number of questions and agent speed.
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")
    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST not found (running locally?)")
    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID not found")
    print("-"*(60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface for SmolAgent Evaluation...")
    demo.launch(debug=True, share=False)