File size: 5,740 Bytes
10e9b7d
 
eccf8e4
3c4371f
10e9b7d
8dce943
 
3db6293
e80aab9
8dce943
 
 
 
 
 
 
 
 
 
 
83b4ffd
 
 
7e4a06b
83b4ffd
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
8dce943
31243f4
8dce943
31243f4
 
8dce943
36ed51a
c1fd3d2
3c4371f
8dce943
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
8dce943
83b4ffd
8dce943
 
83b4ffd
8dce943
 
e80aab9
8dce943
7d65c66
 
3c4371f
31243f4
 
 
 
8dce943
31243f4
 
7d65c66
 
 
31243f4
8dce943
31243f4
 
 
 
8dce943
 
 
 
 
3c4371f
31243f4
e80aab9
8dce943
 
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
 
7d65c66
8dce943
31243f4
8dce943
e80aab9
8dce943
e80aab9
83b4ffd
0ee0419
e514fd7
 
8dce943
 
 
 
 
 
e514fd7
e80aab9
7e4a06b
31243f4
9088b99
7d65c66
8dce943
31243f4
 
 
e80aab9
 
 
8dce943
3c4371f
83b4ffd
8dce943
3c4371f
 
8dce943
3c4371f
83b4ffd
8dce943
83b4ffd
7d65c66
8dce943
 
7d65c66
83b4ffd
8dce943
 
 
83b4ffd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import gradio as gr
import requests
import pandas as pd

from smolagents.agents import ToolCallingAgent

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

def create_agent():
    """
    Create a multi-tool agent with SmolAgents.
    """
    # You specify the tool names as strings!
    agent = ToolCallingAgent(
        tools=["wikipedia", "duckduckgo", "web_search"],
        model="huggingface",
        model_kwargs={"repo_id": "HuggingFaceH4/zephyr-7b-beta"},
    )
    return agent

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Create agent with all relevant tools
    try:
        agent = create_agent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        return f"Error fetching questions: {e}", None
    except Exception as e:
        return f"An unexpected error occurred fetching questions: {e}", None

    # Run the agent on all questions
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"(Agent error: {e})"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # Submit answers
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# SmolAgent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        
        - Clone and modify this space to improve your agent logic as you see fit.
        - Log in to your Hugging Face account with the button below.
        - Click 'Run Evaluation & Submit All Answers' to begin.

        Disclaimer: Submission may take a while depending on the number of questions and agent speed.
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST not found (running locally?)")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID not found")

    print("-"*(60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface for SmolAgent Evaluation...")
    demo.launch(debug=True, share=False)