|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from huggingface_hub import InferenceClient |
|
from duckduckgo_search import DDGS |
|
from datasets import load_dataset |
|
import wikipediaapi |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
llm_model_id = "HuggingFaceH4/zephyr-7b-beta" |
|
hf_client = InferenceClient(llm_model_id, token=HF_TOKEN) |
|
|
|
|
|
wiki_api = wikipediaapi.Wikipedia( |
|
language='en', |
|
user_agent='SmartAgent/1.0 ([email protected])' |
|
) |
|
|
|
|
|
wiki_dataset = load_dataset("wikipedia", "20220301.en", split="train[:10000]", trust_remote_code=True) |
|
|
|
|
|
def duckduckgo_search(query): |
|
with DDGS() as ddgs: |
|
results = [r for r in ddgs.text(query, max_results=3)] |
|
return "\n".join([r["body"] for r in results if r.get("body")]) or "No results found." |
|
|
|
def wikipedia_search(query): |
|
page = wiki_api.page(query) |
|
return page.summary if page.exists() else "No Wikipedia page found." |
|
|
|
|
|
class SmartAgent: |
|
def __init__(self): |
|
pass |
|
|
|
def __call__(self, question: str) -> str: |
|
q_lower = question.lower() |
|
|
|
if any(term in q_lower for term in ["current", "latest", "2024", "2025", "who is the president", "recent", "live"]): |
|
return duckduckgo_search(question) |
|
|
|
wiki_result = wikipedia_search(question) |
|
if "No Wikipedia page found" not in wiki_result: |
|
return wiki_result |
|
|
|
try: |
|
resp = hf_client.text_generation(question, max_new_tokens=512) |
|
return resp |
|
except Exception as e: |
|
return f"HF LLM error: {e}" |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
space_id = os.getenv("SPACE_ID") |
|
if profile: |
|
username = profile.username |
|
print(f"User logged in: {username}") |
|
else: |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
agent = SmartAgent() |
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
results_log = [] |
|
answers_payload = [] |
|
correct_answers = 0 |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or not question_text: |
|
continue |
|
|
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except Exception as e: |
|
return f"Submission Failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Smart Agent Evaluation Runner") |
|
gr.Markdown(""" |
|
**Instructions:** |
|
1. Clone this space, define your agent logic, tools, packages, etc. |
|
2. Log in to Hugging Face. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
""") |
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(debug=True, share=False) |
|
|