ChockqOteewy commited on
Commit
4c42a76
·
verified ·
1 Parent(s): 0195efc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -59
app.py CHANGED
@@ -2,96 +2,124 @@ import os
2
  import gradio as gr
3
  import requests
4
  import pandas as pd
5
- from huggingface_hub import InferenceClient
6
- from duckduckgo_search import DDGS
7
  from datasets import load_dataset
 
 
 
 
 
8
 
 
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # Hugging Face Token (set in environment)
12
  HF_TOKEN = os.environ.get("HF_TOKEN")
13
- deepseek_model = "deepseek-ai/DeepSeek-R1"
14
- hf_client = InferenceClient(model=deepseek_model, token=HF_TOKEN)
15
 
16
- # Load Wikipedia dataset (small subset for efficient retrieval)
17
- wiki_dataset = load_dataset("wikipedia", "20220301.en", split="train[:10000]")
 
 
 
 
18
 
19
- def search_wikipedia(question):
20
- results = wiki_dataset.filter(lambda x: question.lower() in x["text"].lower())
21
- if len(results):
22
- return results[0]["text"][:1000] # limit to first 1000 chars
23
- return "No relevant information found on Wikipedia."
24
 
 
25
  def duckduckgo_search(query):
26
  with DDGS() as ddgs:
27
- results = [r["body"] for r in ddgs.text(query, max_results=3)]
28
- return "\n".join(results) if results else "No results found."
 
 
 
29
 
30
- def ask_deepseek(prompt, max_tokens=512):
31
- try:
32
- response = hf_client.text_generation(
33
- prompt, max_new_tokens=max_tokens, temperature=0.2, repetition_penalty=1.1
 
34
  )
35
- return response
36
- except Exception as e:
37
- return f"DeepSeek Error: {e}"
 
 
 
 
38
 
39
- class SmartAgent:
40
  def __call__(self, question: str) -> str:
41
- q_lower = question.lower()
42
- if any(term in q_lower for term in ["current", "latest", "2024", "2025", "recent", "live", "today", "now"]):
 
 
43
  return duckduckgo_search(question)
44
- deepseek_response = ask_deepseek(question)
45
- if "DeepSeek Error" not in deepseek_response and deepseek_response.strip():
46
- return deepseek_response
47
- # fallback to Wikipedia if DeepSeek fails
48
- return search_wikipedia(question)
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  def run_and_submit_all(profile: gr.OAuthProfile | None):
51
- if not profile:
 
 
 
52
  return "Please Login to Hugging Face with the button.", None
53
- username = profile.username
54
  questions_url = f"{DEFAULT_API_URL}/questions"
55
  submit_url = f"{DEFAULT_API_URL}/submit"
56
- agent_code = f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main"
57
-
 
 
 
 
58
  try:
59
- agent = SmartAgent()
60
  except Exception as e:
61
- return f"Agent Error: {e}", None
62
 
63
- questions_data = requests.get(questions_url).json()
64
  results_log, answers_payload = [], []
65
-
66
  for item in questions_data:
67
- task_id = item.get("task_id")
68
- question_text = item.get("question")
69
- if task_id and question_text:
70
- answer = agent(question_text)
71
- answers_payload.append({"task_id": task_id, "submitted_answer": answer})
72
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer})
73
 
74
  submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
75
- response = requests.post(submit_url, json=submission_data).json()
76
-
77
- final_status = (
78
- f"Submission Successful!\n"
79
- f"User: {response.get('username')}\n"
80
- f"Overall Score: {response.get('score', 'N/A')}%\n"
81
- f"({response.get('correct_count', '?')}/{response.get('total_attempted', '?')} correct)\n"
82
- f"Message: {response.get('message', 'No message received.')}"
83
- )
84
 
85
- return final_status, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
86
 
 
87
  with gr.Blocks() as demo:
88
- gr.Markdown("# Smart Agent Evaluation Runner")
89
  gr.LoginButton()
90
  run_button = gr.Button("Run Evaluation & Submit All Answers")
91
- status_output = gr.Textbox(label="Run Status", lines=5, interactive=False)
92
- results_table = gr.DataFrame(label="Questions and Answers")
93
 
94
- run_button.click(run_and_submit_all, outputs=[status_output, results_table])
95
 
96
  if __name__ == "__main__":
97
- demo.launch(debug=True)
 
2
  import gradio as gr
3
  import requests
4
  import pandas as pd
 
 
5
  from datasets import load_dataset
6
+ from duckduckgo_search import DDGS
7
+ from llama_index.llms.huggingface import HuggingFaceLLM
8
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
9
+ from huggingface_hub import InferenceClient
10
+ import wikipediaapi
11
 
12
+ # Constants
13
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
 
14
  HF_TOKEN = os.environ.get("HF_TOKEN")
 
 
15
 
16
+ # Advanced LLM via Hugging Face Inference API
17
+ llm_model_id = "deepseek-ai/DeepSeek-R1"
18
+ hf_client = InferenceClient(llm_model_id, token=HF_TOKEN)
19
+
20
+ # Wikipedia API setup
21
+ wiki_api = wikipediaapi.Wikipedia('en')
22
 
23
+ # Load Wikipedia dataset from Hugging Face
24
+ wiki_dataset = load_dataset(
25
+ "wikipedia", "20220301.en", split="train[:10000]", trust_remote_code=True
26
+ )
 
27
 
28
+ # DuckDuckGo search function
29
  def duckduckgo_search(query):
30
  with DDGS() as ddgs:
31
+ results = [r for r in ddgs.text(query, max_results=3)]
32
+ if results:
33
+ return "\n".join([r["body"] for r in results if r.get("body")])
34
+ else:
35
+ return "No results found."
36
 
37
+ # Smart Agent combining multiple sources
38
+ class SmartAgent:
39
+ def __init__(self):
40
+ service_context = ServiceContext.from_defaults(
41
+ llm=HuggingFaceLLM(model_name=llm_model_id, token=HF_TOKEN)
42
  )
43
+ docs = [doc["text"] for doc in wiki_dataset]
44
+ self.index = VectorStoreIndex.from_documents(
45
+ [SimpleDirectoryReader.input_to_document(doc) for doc in docs],
46
+ service_context=service_context,
47
+ show_progress=True
48
+ )
49
+ self.query_engine = self.index.as_query_engine()
50
 
 
51
  def __call__(self, question: str) -> str:
52
+ question_lower = question.lower()
53
+
54
+ # Use DuckDuckGo for recent events, dates, or temporal queries
55
+ if any(term in question_lower for term in ["current", "latest", "2024", "2025", "recent", "today", "president"]):
56
  return duckduckgo_search(question)
 
 
 
 
 
57
 
58
+ # Check if Wikipedia page exists for topic
59
+ page = wiki_api.page(question)
60
+ if page.exists():
61
+ return page.summary[:1000] + "..."
62
+
63
+ # Fallback to indexed Wikipedia with RAG
64
+ try:
65
+ response = self.query_engine.query(question)
66
+ return str(response)
67
+ except Exception as e:
68
+ return f"LLM query error: {e}"
69
+
70
+ # Run and submit evaluation
71
  def run_and_submit_all(profile: gr.OAuthProfile | None):
72
+ space_id = os.getenv("SPACE_ID")
73
+ if profile:
74
+ username = f"{profile.username}"
75
+ else:
76
  return "Please Login to Hugging Face with the button.", None
77
+
78
  questions_url = f"{DEFAULT_API_URL}/questions"
79
  submit_url = f"{DEFAULT_API_URL}/submit"
80
+
81
+ # Instantiate agent
82
+ agent = SmartAgent()
83
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
84
+
85
+ # Fetch questions
86
  try:
87
+ questions_data = requests.get(questions_url).json()
88
  except Exception as e:
89
+ return f"Error fetching questions: {e}", None
90
 
 
91
  results_log, answers_payload = [], []
 
92
  for item in questions_data:
93
+ task_id, question_text = item.get("task_id"), item.get("question")
94
+ answer = agent(question_text)
95
+ answers_payload.append({"task_id": task_id, "submitted_answer": answer})
96
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer})
 
 
97
 
98
  submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
 
 
 
 
 
 
 
 
 
99
 
100
+ try:
101
+ result_data = requests.post(submit_url, json=submission_data).json()
102
+ final_status = (
103
+ f"Submission Successful!\n"
104
+ f"User: {result_data.get('username')}\n"
105
+ f"Overall Score: {result_data.get('score')}%\n"
106
+ f"({result_data.get('correct_count')}/{result_data.get('total_attempted')}) correct\n"
107
+ f"Message: {result_data.get('message')}"
108
+ )
109
+ results_df = pd.DataFrame(results_log)
110
+ return final_status, results_df
111
+ except Exception as e:
112
+ return f"Submission Failed: {e}", pd.DataFrame(results_log)
113
 
114
+ # Gradio interface setup
115
  with gr.Blocks() as demo:
116
+ gr.Markdown("# 🚀 Smart Multi-Source Agent Evaluation")
117
  gr.LoginButton()
118
  run_button = gr.Button("Run Evaluation & Submit All Answers")
119
+ status_output = gr.Textbox(label="Status & Results", lines=6, interactive=False)
120
+ results_table = gr.DataFrame(label="Agent Answers")
121
 
122
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
123
 
124
  if __name__ == "__main__":
125
+ demo.launch(debug=True, share=False)