import os import gradio as gr import requests import pandas as pd from huggingface_hub import InferenceClient from duckduckgo_search import DDGS from datasets import load_dataset DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # Hugging Face Token (set in environment) HF_TOKEN = os.environ.get("HF_TOKEN") deepseek_model = "deepseek-ai/DeepSeek-R1" hf_client = InferenceClient(model=deepseek_model, token=HF_TOKEN) # Load Wikipedia dataset (small subset for efficient retrieval) wiki_dataset = load_dataset("wikipedia", "20220301.en", split="train[:10000]") def search_wikipedia(question): results = wiki_dataset.filter(lambda x: question.lower() in x["text"].lower()) if len(results): return results[0]["text"][:1000] # limit to first 1000 chars return "No relevant information found on Wikipedia." def duckduckgo_search(query): with DDGS() as ddgs: results = [r["body"] for r in ddgs.text(query, max_results=3)] return "\n".join(results) if results else "No results found." def ask_deepseek(prompt, max_tokens=512): try: response = hf_client.text_generation( prompt, max_new_tokens=max_tokens, temperature=0.2, repetition_penalty=1.1 ) return response except Exception as e: return f"DeepSeek Error: {e}" class SmartAgent: def __call__(self, question: str) -> str: q_lower = question.lower() if any(term in q_lower for term in ["current", "latest", "2024", "2025", "recent", "live", "today", "now"]): return duckduckgo_search(question) deepseek_response = ask_deepseek(question) if "DeepSeek Error" not in deepseek_response and deepseek_response.strip(): return deepseek_response # fallback to Wikipedia if DeepSeek fails return search_wikipedia(question) def run_and_submit_all(profile: gr.OAuthProfile | None): if not profile: return "Please Login to Hugging Face with the button.", None username = profile.username questions_url = f"{DEFAULT_API_URL}/questions" submit_url = f"{DEFAULT_API_URL}/submit" agent_code = f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main" try: agent = SmartAgent() except Exception as e: return f"Agent Error: {e}", None questions_data = requests.get(questions_url).json() results_log, answers_payload = [], [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if task_id and question_text: answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer}) submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} response = requests.post(submit_url, json=submission_data).json() final_status = ( f"Submission Successful!\n" f"User: {response.get('username')}\n" f"Overall Score: {response.get('score', 'N/A')}%\n" f"({response.get('correct_count', '?')}/{response.get('total_attempted', '?')} correct)\n" f"Message: {response.get('message', 'No message received.')}" ) return final_status, pd.DataFrame(results_log) with gr.Blocks() as demo: gr.Markdown("# Smart Agent Evaluation Runner") gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Answers") run_button.click(run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": demo.launch(debug=True)