HarryCovert commited on
Commit
e00746a
·
1 Parent(s): b9dd199

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -3
README.md CHANGED
@@ -12,7 +12,20 @@ We further pre-trained CamemBERT base model on French plant health bulletins and
12
 
13
  ChouBERT-n are pre-trained for n epochs with MLM.
14
 
15
- ChouBERT-n-plant-health-tweet-classifier are fine-tuned ChouBERT-n for distinguishing tweets about Plant Health observation from other tweets. We describe how we build ChouBRET in this paper:
16
- Shufan Jiang, Rafael Angarita, Stéphane Cormier, Julien Orensanz, Francis Rousseaux. ChouBERT: Pre-training French Language Model for Crowdsensing with Tweets in Phytosanitary Context. International Conference on Research Challenges in Information Science (RCIS), 2022, Barcelona, Spain. pp.653-661, ⟨10.1007/978-3-031-05760-1_40⟩. <https://hal.archives-ouvertes.fr/hal-03621123>
17
-
18
  ChouBERT-n-plant-health-ner are fine-tuned ChouBERT-n for Named Entity Recongnition (NER) in plant health domain. We will upload the NER paper later.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  ChouBERT-n are pre-trained for n epochs with MLM.
14
 
 
 
 
15
  ChouBERT-n-plant-health-ner are fine-tuned ChouBERT-n for Named Entity Recongnition (NER) in plant health domain. We will upload the NER paper later.
16
+
17
+ ChouBERT-n-plant-health-tweet-classifier are fine-tuned ChouBERT-n for distinguishing tweets about Plant Health observation from other tweets. We describe how we build ChouBRET in this paper: <https://hal.archives-ouvertes.fr/hal-03621123>
18
+
19
+ ### BibTeX entry
20
+
21
+ ```bibtex
22
+ @inproceedings{jiang2022choubert,
23
+ title={ChouBERT: Pre-training French Language Model for Crowdsensing with Tweets in Phytosanitary Context},
24
+ author={Jiang, Shufan and Angarita, Rafael and Cormier, St{\'e}phane and Orensanz, Julien and Rousseaux, Francis},
25
+ booktitle={International Conference on Research Challenges in Information Science},
26
+ pages={653--661},
27
+ year={2022},
28
+ organization={Springer}
29
+ }
30
+ ```
31
+