File size: 5,656 Bytes
d60982d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python
# coding: utf-8

from __future__ import absolute_import, division, print_function

import os
import numpy as np
import torch
import torch.nn as nn
from torchvision import transforms

from utils.dataset import GraphDataset
from utils.lr_scheduler import LR_Scheduler
from tensorboardX import SummaryWriter
from helper import Trainer, Evaluator, collate
from option import Options

from models.GraphTransformer import Classifier
from models.weight_init import weight_init
import pickle
args = Options().parse()

label_map = pickle.load(open(os.path.join(args.dataset_metadata_path, 'label_map.pkl'), 'rb'))

n_class = len(label_map)

torch.cuda.synchronize()
torch.backends.cudnn.deterministic = True

data_path = args.data_path
model_path = args.model_path
if not os.path.isdir(model_path): os.mkdir(model_path)
log_path = args.log_path
if not os.path.isdir(log_path): os.mkdir(log_path)
task_name = args.task_name

print(task_name)
###################################
train = args.train
test = args.test
graphcam = args.graphcam
print("train:", train, "test:", test, "graphcam:", graphcam)

##### Load datasets
print("preparing datasets and dataloaders......")
batch_size = args.batch_size

if train:
    ids_train = open(args.train_set).readlines()
    dataset_train = GraphDataset(os.path.join(data_path, ""), ids_train, args.dataset_metadata_path)
    dataloader_train = torch.utils.data.DataLoader(dataset=dataset_train, batch_size=batch_size, num_workers=10, collate_fn=collate, shuffle=True, pin_memory=True, drop_last=True)
    total_train_num = len(dataloader_train) * batch_size

ids_val = open(args.val_set).readlines()
dataset_val = GraphDataset(os.path.join(data_path, ""), ids_val, args.dataset_metadata_path)
dataloader_val = torch.utils.data.DataLoader(dataset=dataset_val, batch_size=batch_size, num_workers=10, collate_fn=collate, shuffle=False, pin_memory=True)
total_val_num = len(dataloader_val) * batch_size
    
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
##### creating models #############
print("creating models......")

num_epochs = args.num_epochs
learning_rate = args.lr

model = Classifier(n_class)
model = nn.DataParallel(model)
if args.resume:
    print('load model{}'.format(args.resume))
    model.load_state_dict(torch.load(args.resume))

if torch.cuda.is_available():
    model = model.cuda()
#model.apply(weight_init)

optimizer = torch.optim.Adam(model.parameters(), lr = learning_rate, weight_decay = 5e-4)       # best:5e-4, 4e-3
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20,100], gamma=0.1) # gamma=0.3  # 30,90,130 # 20,90,130 -> 150

##################################

criterion = nn.CrossEntropyLoss()

if not test:
    writer = SummaryWriter(log_dir=log_path + task_name)
    f_log = open(log_path + task_name + ".log", 'w')

trainer = Trainer(n_class)
evaluator = Evaluator(n_class)

best_pred = 0.0
for epoch in range(num_epochs):
    # optimizer.zero_grad()
    model.train()
    train_loss = 0.
    total = 0.

    current_lr = optimizer.param_groups[0]['lr']
    print('\n=>Epoches %i, learning rate = %.7f, previous best = %.4f' % (epoch+1, current_lr, best_pred))

    if train:
        for i_batch, sample_batched in enumerate(dataloader_train):
            scheduler.step(epoch)

            preds,labels,loss = trainer.train(sample_batched, model)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            train_loss += loss
            total += len(labels)

            trainer.metrics.update(labels, preds)
            if (i_batch + 1) % args.log_interval_local == 0:
                print("[%d/%d] train loss: %.3f; agg acc: %.3f" % (total, total_train_num, train_loss / total, trainer.get_scores()))
                trainer.plot_cm()

    if not test: 
        print("[%d/%d] train loss: %.3f; agg acc: %.3f" % (total_train_num, total_train_num, train_loss / total, trainer.get_scores()))
        trainer.plot_cm()


    if epoch % 1 == 0:
        with torch.no_grad():
            model.eval()
            print("evaluating...")

            total = 0.
            batch_idx = 0

            for i_batch, sample_batched in enumerate(dataloader_val):
                preds, labels, _ = evaluator.eval_test(sample_batched, model, graphcam)
                
                total += len(labels)

                evaluator.metrics.update(labels, preds)

                if (i_batch + 1) % args.log_interval_local == 0:
                    print('[%d/%d] val agg acc: %.3f' % (total, total_val_num, evaluator.get_scores()))
                    evaluator.plot_cm()

            print('[%d/%d] val agg acc: %.3f' % (total_val_num, total_val_num, evaluator.get_scores()))
            evaluator.plot_cm()

            # torch.cuda.empty_cache()

            val_acc = evaluator.get_scores()
            if val_acc > best_pred: 
                best_pred = val_acc
                if not test:
                    print("saving model...")
                    torch.save(model.state_dict(), model_path + task_name + ".pth")

            log = ""
            log = log + 'epoch [{}/{}] ------ acc: train = {:.4f}, val = {:.4f}'.format(epoch+1, num_epochs, trainer.get_scores(), evaluator.get_scores()) + "\n"

            log += "================================\n"
            print(log)
            if test: break

            f_log.write(log)
            f_log.flush()

            writer.add_scalars('accuracy', {'train acc': trainer.get_scores(), 'val acc': evaluator.get_scores()}, epoch+1)

    trainer.reset_metrics()
    evaluator.reset_metrics()

if not test: f_log.close()