File size: 5,958 Bytes
d60982d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
import openslide
import os
from streamlit_option_menu import option_menu
import torch


if torch.cuda.is_available():
    os.system("pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.1+cu113.html")
    os.system("pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.1+cu113.html")
    os.system("pip install torch-geometric -f https://pytorch-geometric.com/whl/torch-1.7.1+cu113.html")    
else:
    os.system("pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.1+cpu.html")
    os.system("pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.1+cpu.html")
    os.system("pip install torch-geometric -f https://pytorch-geometric.com/whl/torch-1.7.1+cpu.html")

from predict import Predictor



# environment variables for the inference api
os.environ['DATA_DIR'] = 'queries'
os.environ['PATCHES_DIR'] =  os.path.join(os.environ['DATA_DIR'], 'patches')
os.environ['SLIDES_DIR'] = os.path.join(os.environ['DATA_DIR'], 'slides')
os.environ['GRAPHCAM_DIR'] = os.path.join(os.environ['DATA_DIR'], 'graphcam_plots')
os.makedirs(os.environ['GRAPHCAM_DIR'], exist_ok=True)


# manually put the metadata in the metadata folder
os.environ['CLASS_METADATA'] ='metadata/label_map.pkl'

# manually put the desired weights in the weights folder
os.environ['WEIGHTS_PATH'] = WEIGHTS_PATH='weights'
os.environ['FEATURE_EXTRACTOR_WEIGHT_PATH'] = os.path.join(os.environ['WEIGHTS_PATH'], 'feature_extractor', 'model.pth')
os.environ['GT_WEIGHT_PATH']  = os.path.join(os.environ['WEIGHTS_PATH'], 'graph_transformer', 'GraphCAM.pth')


st.set_page_config(page_title="",layout='wide')
predictor = Predictor()





ABOUT_TEXT = "🤗 LastMinute Medical - Web diagnosis tool."
CONTACT_TEXT = """
_Built by Christian Cancedda and LabLab lads with love_ ❤️ 
[![Follow](https://img.shields.io/github/followers/Chris1nexus?style=social)](https://github.com/Chris1nexus)
[![Follow](https://img.shields.io/twitter/follow/chris_cancedda?style=social)](https://twitter.com/intent/follow?screen_name=chris_cancedda)
"""
VISUALIZE_TEXT = "Visualize WSI slide by uploading it on the provided window"
DETECT_TEXT = "Generate a preliminary diagnosis about the presence of  pulmonary disease"



with st.sidebar:
    choice = option_menu("LastMinute - Diagnosis",
                         ["About", "Visualize WSI slide", "Cancer Detection", "Contact"],
                         icons=['house', 'upload', 'activity',  'person lines fill'],
                         menu_icon="app-indicator", default_index=0,
                         styles={
                             # "container": {"padding": "5!important", "background-color": "#fafafa", },
                             "container": {"border-radius": ".0rem"},
                             # "icon": {"color": "orange", "font-size": "25px"},
                             # "nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px",
                             #              "--hover-color": "#eee"},
                             # "nav-link-selected": {"background-color": "#02ab21"},
                         }
                         )
st.sidebar.markdown(
    """
<style>
.aligncenter {
    text-align: center;
}
</style>
<p class="aligncenter">
    <a href="https://twitter.com/chris_cancedda" target="_blank"> 
        <img src="https://img.shields.io/twitter/follow/chris_cancedda?style=social"/>
    </a>
</p>
    """,
    unsafe_allow_html=True,
)



if choice == "About":
    st.title(choice)



if choice == "Visualize WSI slide":
    st.title(choice)
    st.markdown(VISUALIZE_TEXT)

    uploaded_file = st.file_uploader("Choose a WSI slide file to diagnose (.svs)")
    if uploaded_file is not None:
        ori = openslide.OpenSlide(uploaded_file.name)
        width, height = ori.dimensions

        REDUCTION_FACTOR = 20
        w, h = int(width/512), int(height/512)
        w_r, h_r = int(width/20), int(height/20)
        resized_img = ori.get_thumbnail((w_r,h_r))
        resized_img = resized_img.resize((w_r,h_r))
        ratio_w, ratio_h = width/resized_img.width, height/resized_img.height
        #print('ratios ', ratio_w, ratio_h)
        w_s, h_s = float(512/REDUCTION_FACTOR), float(512/REDUCTION_FACTOR)   
        st.image(resized_img, use_column_width='never')   

if choice == "Cancer Detection":
    state = dict()
    
    st.title(choice)
    st.markdown(DETECT_TEXT)
    uploaded_file = st.file_uploader("Choose a WSI slide file to diagnose (.svs)")
    if uploaded_file is not None:
        # To read file as bytes:
        #print(uploaded_file)
        with open(os.path.join(uploaded_file.name),"wb") as f:
             f.write(uploaded_file.getbuffer())
        with st.spinner(text="Computation is running"):
            predicted_class, viz_dict = predictor.predict(uploaded_file.name)
        st.info('Computation completed.')
        st.header(f'Predicted to be: {predicted_class}')
        st.text('Heatmap of the areas that show markers correlated with the disease.\nIncreasing red tones represent higher likelihood that the area is affected')
        state['cur'] = predicted_class
        mapper = {'ORI': predicted_class, predicted_class:'ORI'}
        readable_mapper = {'ORI': 'Original',  predicted_class :'Disease heatmap' }        
        #def fn():
        #    st.image(viz_dict[mapper[state['cur']]], use_column_width='never', channels='BGR') 
        #    state['cur'] = mapper[state['cur']]
        #    return 

        #st.button(f'See {readable_mapper[mapper[state["cur"]] ]}', on_click=fn   )
        #st.image(viz_dict[state['cur']], use_column_width='never', channels='BGR') 
        st.image([viz_dict[state['cur']],viz_dict['ORI']], caption=['Original', f'{predicted_class} heatmap'] ,channels='BGR'
            # use_column_width='never', 
            ) 
            

if choice == "Contact":
    st.title(choice)
    st.markdown(CONTACT_TEXT)