chris1nexus
First commit
54660f7
""" Vision Transformer (ViT) in PyTorch
"""
import torch
import torch.nn as nn
from einops import rearrange
from .layers import *
import math
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
# patch models
'vit_small_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
),
'vit_base_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
),
'vit_large_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
}
def compute_rollout_attention(all_layer_matrices, start_layer=0):
# adding residual consideration
num_tokens = all_layer_matrices[0].shape[1]
batch_size = all_layer_matrices[0].shape[0]
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
# all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
# for i in range(len(all_layer_matrices))]
joint_attention = all_layer_matrices[start_layer]
for i in range(start_layer+1, len(all_layer_matrices)):
joint_attention = all_layer_matrices[i].bmm(joint_attention)
return joint_attention
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = Linear(in_features, hidden_features)
self.act = GELU()
self.fc2 = Linear(hidden_features, out_features)
self.drop = Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def relprop(self, cam, **kwargs):
cam = self.drop.relprop(cam, **kwargs)
cam = self.fc2.relprop(cam, **kwargs)
cam = self.act.relprop(cam, **kwargs)
cam = self.fc1.relprop(cam, **kwargs)
return cam
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = head_dim ** -0.5
# A = Q*K^T
self.matmul1 = einsum('bhid,bhjd->bhij')
# attn = A*V
self.matmul2 = einsum('bhij,bhjd->bhid')
self.qkv = Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = Dropout(attn_drop)
self.proj = Linear(dim, dim)
self.proj_drop = Dropout(proj_drop)
self.softmax = Softmax(dim=-1)
self.attn_cam = None
self.attn = None
self.v = None
self.v_cam = None
self.attn_gradients = None
def get_attn(self):
return self.attn
def save_attn(self, attn):
self.attn = attn
def save_attn_cam(self, cam):
self.attn_cam = cam
def get_attn_cam(self):
return self.attn_cam
def get_v(self):
return self.v
def save_v(self, v):
self.v = v
def save_v_cam(self, cam):
self.v_cam = cam
def get_v_cam(self):
return self.v_cam
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def forward(self, x):
b, n, _, h = *x.shape, self.num_heads
qkv = self.qkv(x)
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h)
self.save_v(v)
dots = self.matmul1([q, k]) * self.scale
attn = self.softmax(dots)
attn = self.attn_drop(attn)
# Get attention
if False:
from os import path
if not path.exists('att_1.pt'):
torch.save(attn, 'att_1.pt')
elif not path.exists('att_2.pt'):
torch.save(attn, 'att_2.pt')
else:
torch.save(attn, 'att_3.pt')
#comment in training
if x.requires_grad:
self.save_attn(attn)
attn.register_hook(self.save_attn_gradients)
out = self.matmul2([attn, v])
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.proj(out)
out = self.proj_drop(out)
return out
def relprop(self, cam, **kwargs):
cam = self.proj_drop.relprop(cam, **kwargs)
cam = self.proj.relprop(cam, **kwargs)
cam = rearrange(cam, 'b n (h d) -> b h n d', h=self.num_heads)
# attn = A*V
(cam1, cam_v)= self.matmul2.relprop(cam, **kwargs)
cam1 /= 2
cam_v /= 2
self.save_v_cam(cam_v)
self.save_attn_cam(cam1)
cam1 = self.attn_drop.relprop(cam1, **kwargs)
cam1 = self.softmax.relprop(cam1, **kwargs)
# A = Q*K^T
(cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs)
cam_q /= 2
cam_k /= 2
cam_qkv = rearrange([cam_q, cam_k, cam_v], 'qkv b h n d -> b n (qkv h d)', qkv=3, h=self.num_heads)
return self.qkv.relprop(cam_qkv, **kwargs)
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.):
super().__init__()
self.norm1 = LayerNorm(dim, eps=1e-6)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = LayerNorm(dim, eps=1e-6)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop)
self.add1 = Add()
self.add2 = Add()
self.clone1 = Clone()
self.clone2 = Clone()
def forward(self, x):
x1, x2 = self.clone1(x, 2)
x = self.add1([x1, self.attn(self.norm1(x2))])
x1, x2 = self.clone2(x, 2)
x = self.add2([x1, self.mlp(self.norm2(x2))])
return x
def relprop(self, cam, **kwargs):
(cam1, cam2) = self.add2.relprop(cam, **kwargs)
cam2 = self.mlp.relprop(cam2, **kwargs)
cam2 = self.norm2.relprop(cam2, **kwargs)
cam = self.clone2.relprop((cam1, cam2), **kwargs)
(cam1, cam2) = self.add1.relprop(cam, **kwargs)
cam2 = self.attn.relprop(cam2, **kwargs)
cam2 = self.norm1.relprop(cam2, **kwargs)
cam = self.clone1.relprop((cam1, cam2), **kwargs)
return cam
class VisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, num_classes=2, embed_dim=64, depth=3,
num_heads=8, mlp_ratio=2., qkv_bias=False, mlp_head=False, drop_rate=0., attn_drop_rate=0.):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate)
for i in range(depth)])
self.norm = LayerNorm(embed_dim)
if mlp_head:
# paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper
self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes)
else:
# with a single Linear layer as head, the param count within rounding of paper
self.head = Linear(embed_dim, num_classes)
#self.apply(self._init_weights)
self.pool = IndexSelect()
self.add = Add()
self.inp_grad = None
def save_inp_grad(self,grad):
self.inp_grad = grad
def get_inp_grad(self):
return self.inp_grad
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@property
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def forward(self, x):
if x.requires_grad:
x.register_hook(self.save_inp_grad) #comment it in train
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device))
x = x.squeeze(1)
x = self.head(x)
return x
def relprop(self, cam=None,method="transformer_attribution", is_ablation=False, start_layer=0, **kwargs):
# print(kwargs)
# print("conservation 1", cam.sum())
cam = self.head.relprop(cam, **kwargs)
cam = cam.unsqueeze(1)
cam = self.pool.relprop(cam, **kwargs)
cam = self.norm.relprop(cam, **kwargs)
for blk in reversed(self.blocks):
cam = blk.relprop(cam, **kwargs)
# print("conservation 2", cam.sum())
# print("min", cam.min())
if method == "full":
(cam, _) = self.add.relprop(cam, **kwargs)
cam = cam[:, 1:]
cam = self.patch_embed.relprop(cam, **kwargs)
# sum on channels
cam = cam.sum(dim=1)
return cam
elif method == "rollout":
# cam rollout
attn_cams = []
for blk in self.blocks:
attn_heads = blk.attn.get_attn_cam().clamp(min=0)
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
attn_cams.append(avg_heads)
cam = compute_rollout_attention(attn_cams, start_layer=start_layer)
cam = cam[:, 0, 1:]
return cam
# our method, method name grad is legacy
elif method == "transformer_attribution" or method == "grad":
cams = []
for blk in self.blocks:
grad = blk.attn.get_attn_gradients()
cam = blk.attn.get_attn_cam()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
cams.append(cam.unsqueeze(0))
rollout = compute_rollout_attention(cams, start_layer=start_layer)
cam = rollout[:, 0, 1:]
return cam
elif method == "last_layer":
cam = self.blocks[-1].attn.get_attn_cam()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
if is_ablation:
grad = self.blocks[-1].attn.get_attn_gradients()
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
cam = cam[0, 1:]
return cam
elif method == "last_layer_attn":
cam = self.blocks[-1].attn.get_attn()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
cam = cam.clamp(min=0).mean(dim=0)
cam = cam[0, 1:]
return cam
elif method == "second_layer":
cam = self.blocks[1].attn.get_attn_cam()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
if is_ablation:
grad = self.blocks[1].attn.get_attn_gradients()
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
cam = cam[0, 1:]
return cam