Spaces:
Runtime error
Runtime error
""" Vision Transformer (ViT) in PyTorch | |
""" | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from .layers import * | |
import math | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
# type: (Tensor, float, float, float, float) -> Tensor | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# patch models | |
'vit_small_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', | |
), | |
'vit_base_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
), | |
'vit_large_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
} | |
def compute_rollout_attention(all_layer_matrices, start_layer=0): | |
# adding residual consideration | |
num_tokens = all_layer_matrices[0].shape[1] | |
batch_size = all_layer_matrices[0].shape[0] | |
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device) | |
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))] | |
# all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True) | |
# for i in range(len(all_layer_matrices))] | |
joint_attention = all_layer_matrices[start_layer] | |
for i in range(start_layer+1, len(all_layer_matrices)): | |
joint_attention = all_layer_matrices[i].bmm(joint_attention) | |
return joint_attention | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = Linear(in_features, hidden_features) | |
self.act = GELU() | |
self.fc2 = Linear(hidden_features, out_features) | |
self.drop = Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def relprop(self, cam, **kwargs): | |
cam = self.drop.relprop(cam, **kwargs) | |
cam = self.fc2.relprop(cam, **kwargs) | |
cam = self.act.relprop(cam, **kwargs) | |
cam = self.fc1.relprop(cam, **kwargs) | |
return cam | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = head_dim ** -0.5 | |
# A = Q*K^T | |
self.matmul1 = einsum('bhid,bhjd->bhij') | |
# attn = A*V | |
self.matmul2 = einsum('bhij,bhjd->bhid') | |
self.qkv = Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = Dropout(attn_drop) | |
self.proj = Linear(dim, dim) | |
self.proj_drop = Dropout(proj_drop) | |
self.softmax = Softmax(dim=-1) | |
self.attn_cam = None | |
self.attn = None | |
self.v = None | |
self.v_cam = None | |
self.attn_gradients = None | |
def get_attn(self): | |
return self.attn | |
def save_attn(self, attn): | |
self.attn = attn | |
def save_attn_cam(self, cam): | |
self.attn_cam = cam | |
def get_attn_cam(self): | |
return self.attn_cam | |
def get_v(self): | |
return self.v | |
def save_v(self, v): | |
self.v = v | |
def save_v_cam(self, cam): | |
self.v_cam = cam | |
def get_v_cam(self): | |
return self.v_cam | |
def save_attn_gradients(self, attn_gradients): | |
self.attn_gradients = attn_gradients | |
def get_attn_gradients(self): | |
return self.attn_gradients | |
def forward(self, x): | |
b, n, _, h = *x.shape, self.num_heads | |
qkv = self.qkv(x) | |
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h) | |
self.save_v(v) | |
dots = self.matmul1([q, k]) * self.scale | |
attn = self.softmax(dots) | |
attn = self.attn_drop(attn) | |
# Get attention | |
if False: | |
from os import path | |
if not path.exists('att_1.pt'): | |
torch.save(attn, 'att_1.pt') | |
elif not path.exists('att_2.pt'): | |
torch.save(attn, 'att_2.pt') | |
else: | |
torch.save(attn, 'att_3.pt') | |
#comment in training | |
if x.requires_grad: | |
self.save_attn(attn) | |
attn.register_hook(self.save_attn_gradients) | |
out = self.matmul2([attn, v]) | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
out = self.proj(out) | |
out = self.proj_drop(out) | |
return out | |
def relprop(self, cam, **kwargs): | |
cam = self.proj_drop.relprop(cam, **kwargs) | |
cam = self.proj.relprop(cam, **kwargs) | |
cam = rearrange(cam, 'b n (h d) -> b h n d', h=self.num_heads) | |
# attn = A*V | |
(cam1, cam_v)= self.matmul2.relprop(cam, **kwargs) | |
cam1 /= 2 | |
cam_v /= 2 | |
self.save_v_cam(cam_v) | |
self.save_attn_cam(cam1) | |
cam1 = self.attn_drop.relprop(cam1, **kwargs) | |
cam1 = self.softmax.relprop(cam1, **kwargs) | |
# A = Q*K^T | |
(cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs) | |
cam_q /= 2 | |
cam_k /= 2 | |
cam_qkv = rearrange([cam_q, cam_k, cam_v], 'qkv b h n d -> b n (qkv h d)', qkv=3, h=self.num_heads) | |
return self.qkv.relprop(cam_qkv, **kwargs) | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.): | |
super().__init__() | |
self.norm1 = LayerNorm(dim, eps=1e-6) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.norm2 = LayerNorm(dim, eps=1e-6) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop) | |
self.add1 = Add() | |
self.add2 = Add() | |
self.clone1 = Clone() | |
self.clone2 = Clone() | |
def forward(self, x): | |
x1, x2 = self.clone1(x, 2) | |
x = self.add1([x1, self.attn(self.norm1(x2))]) | |
x1, x2 = self.clone2(x, 2) | |
x = self.add2([x1, self.mlp(self.norm2(x2))]) | |
return x | |
def relprop(self, cam, **kwargs): | |
(cam1, cam2) = self.add2.relprop(cam, **kwargs) | |
cam2 = self.mlp.relprop(cam2, **kwargs) | |
cam2 = self.norm2.relprop(cam2, **kwargs) | |
cam = self.clone2.relprop((cam1, cam2), **kwargs) | |
(cam1, cam2) = self.add1.relprop(cam, **kwargs) | |
cam2 = self.attn.relprop(cam2, **kwargs) | |
cam2 = self.norm1.relprop(cam2, **kwargs) | |
cam = self.clone1.relprop((cam1, cam2), **kwargs) | |
return cam | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__(self, num_classes=2, embed_dim=64, depth=3, | |
num_heads=8, mlp_ratio=2., qkv_bias=False, mlp_head=False, drop_rate=0., attn_drop_rate=0.): | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate) | |
for i in range(depth)]) | |
self.norm = LayerNorm(embed_dim) | |
if mlp_head: | |
# paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper | |
self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes) | |
else: | |
# with a single Linear layer as head, the param count within rounding of paper | |
self.head = Linear(embed_dim, num_classes) | |
#self.apply(self._init_weights) | |
self.pool = IndexSelect() | |
self.add = Add() | |
self.inp_grad = None | |
def save_inp_grad(self,grad): | |
self.inp_grad = grad | |
def get_inp_grad(self): | |
return self.inp_grad | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def forward(self, x): | |
if x.requires_grad: | |
x.register_hook(self.save_inp_grad) #comment it in train | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.norm(x) | |
x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device)) | |
x = x.squeeze(1) | |
x = self.head(x) | |
return x | |
def relprop(self, cam=None,method="transformer_attribution", is_ablation=False, start_layer=0, **kwargs): | |
# print(kwargs) | |
# print("conservation 1", cam.sum()) | |
cam = self.head.relprop(cam, **kwargs) | |
cam = cam.unsqueeze(1) | |
cam = self.pool.relprop(cam, **kwargs) | |
cam = self.norm.relprop(cam, **kwargs) | |
for blk in reversed(self.blocks): | |
cam = blk.relprop(cam, **kwargs) | |
# print("conservation 2", cam.sum()) | |
# print("min", cam.min()) | |
if method == "full": | |
(cam, _) = self.add.relprop(cam, **kwargs) | |
cam = cam[:, 1:] | |
cam = self.patch_embed.relprop(cam, **kwargs) | |
# sum on channels | |
cam = cam.sum(dim=1) | |
return cam | |
elif method == "rollout": | |
# cam rollout | |
attn_cams = [] | |
for blk in self.blocks: | |
attn_heads = blk.attn.get_attn_cam().clamp(min=0) | |
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() | |
attn_cams.append(avg_heads) | |
cam = compute_rollout_attention(attn_cams, start_layer=start_layer) | |
cam = cam[:, 0, 1:] | |
return cam | |
# our method, method name grad is legacy | |
elif method == "transformer_attribution" or method == "grad": | |
cams = [] | |
for blk in self.blocks: | |
grad = blk.attn.get_attn_gradients() | |
cam = blk.attn.get_attn_cam() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
cam = grad * cam | |
cam = cam.clamp(min=0).mean(dim=0) | |
cams.append(cam.unsqueeze(0)) | |
rollout = compute_rollout_attention(cams, start_layer=start_layer) | |
cam = rollout[:, 0, 1:] | |
return cam | |
elif method == "last_layer": | |
cam = self.blocks[-1].attn.get_attn_cam() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
if is_ablation: | |
grad = self.blocks[-1].attn.get_attn_gradients() | |
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
cam = grad * cam | |
cam = cam.clamp(min=0).mean(dim=0) | |
cam = cam[0, 1:] | |
return cam | |
elif method == "last_layer_attn": | |
cam = self.blocks[-1].attn.get_attn() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
cam = cam.clamp(min=0).mean(dim=0) | |
cam = cam[0, 1:] | |
return cam | |
elif method == "second_layer": | |
cam = self.blocks[1].attn.get_attn_cam() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
if is_ablation: | |
grad = self.blocks[1].attn.get_attn_gradients() | |
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
cam = grad * cam | |
cam = cam.clamp(min=0).mean(dim=0) | |
cam = cam[0, 1:] | |
return cam |