Spaces:
Sleeping
Sleeping
# services/faq_service.py | |
from typing import List, Dict, Any, Optional | |
import aiohttp | |
from bs4 import BeautifulSoup | |
import faiss | |
import logging | |
from config.config import settings | |
logger = logging.getLogger(__name__) | |
class FAQService: | |
def __init__(self, model_service): | |
self.embedder = model_service.embedder | |
self.faiss_index = None | |
self.faq_data = [] | |
async def fetch_faq_pages(self) -> List[Dict[str, Any]]: | |
async with aiohttp.ClientSession() as session: | |
try: | |
async with session.get(f"{settings.FAQ_ROOT_URL}sitemap.xml", timeout=settings.TIMEOUT) as response: | |
if response.status == 200: | |
sitemap = await response.text() | |
soup = BeautifulSoup(sitemap, 'xml') | |
faq_urls = [loc.text for loc in soup.find_all('loc') if "/faq/" in loc.text] | |
tasks = [self.fetch_faq_content(url, session) for url in faq_urls] | |
return await asyncio.gather(*tasks) | |
except Exception as e: | |
logger.error(f"Error fetching FAQ sitemap: {e}") | |
return [] | |
async def fetch_faq_content(self, url: str, session: aiohttp.ClientSession) -> Optional[Dict[str, Any]]: | |
try: | |
async with session.get(url, timeout=settings.TIMEOUT) as response: | |
if response.status == 200: | |
content = await response.text() | |
soup = BeautifulSoup(content, 'html.parser') | |
faq_title = soup.find('h1').text.strip() if soup.find('h1') else "Unknown Title" | |
faqs = [] | |
sections = soup.find_all(['div', 'section'], class_=['faq-item', 'faq-section']) | |
for section in sections: | |
question = section.find(['h2', 'h3']).text.strip() if section.find(['h2', 'h3']) else None | |
answer = section.find(['p']).text.strip() if section.find(['p']) else None | |
if question and answer: | |
faqs.append({"question": question, "answer": answer}) | |
return {"url": url, "title": faq_title, "faqs": faqs} | |
except Exception as e: | |
logger.error(f"Error fetching FAQ content from {url}: {e}") | |
return None | |
async def index_faqs(self): | |
faq_pages = await self.fetch_faq_pages() | |
faq_pages = [page for page in faq_pages if page] | |
self.faq_data = [] | |
all_texts = [] | |
for faq_page in faq_pages: | |
for item in faq_page['faqs']: | |
combined_text = f"{item['question']} {item['answer']}" | |
all_texts.append(combined_text) | |
self.faq_data.append({ | |
"question": item['question'], | |
"answer": item['answer'], | |
"source": faq_page['url'] | |
}) | |
embeddings = self.embedder.encode(all_texts, convert_to_tensor=True).cpu().detach().numpy() | |
dimension = embeddings.shape[1] | |
self.faiss_index = faiss.IndexFlatL2(dimension) | |
self.faiss_index.add(embeddings) | |
async def search_faqs(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]: | |
if not self.faiss_index: | |
await self.index_faqs() | |
query_embedding = self.embedder.encode([query], convert_to_tensor=True).cpu().detach().numpy() | |
distances, indices = self.faiss_index.search(query_embedding, top_k) | |
results = [] | |
for i, idx in enumerate(indices[0]): | |
if idx < len(self.faq_data): | |
result = self.faq_data[idx].copy() | |
result["score"] = float(distances[0][i]) | |
results.append(result) | |
return results |