Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from typing import List, Tuple, Optional, Dict, Any, Union | |
from dataclasses import dataclass | |
from enum import Enum | |
import logging | |
from huggingface_hub import hf_hub_download | |
prm_model_path = hf_hub_download( | |
repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF", | |
filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf" | |
) | |
class GenerationStrategy(str, Enum): | |
DEFAULT = "default" | |
MAJORITY_VOTING = "majority_voting" | |
BEST_OF_N = "best_of_n" | |
BEAM_SEARCH = "beam_search" | |
DVTS = "dvts" | |
class GenerationConfig: | |
num_samples: int = 5 | |
depth: int = 3 | |
breadth: int = 2 | |
max_history_turns: int = 3 | |
max_new_tokens: int = 50 | |
temperature: float = 0.7 | |
top_p: float = 0.9 | |
strategy: GenerationStrategy = GenerationStrategy.DEFAULT | |
class LlamaGenerator: | |
def __init__( | |
self, | |
llama_model_name: str, | |
prm_model_path: str, | |
device: str = None, | |
default_generation_config: Optional[GenerationConfig] = None | |
): | |
"""Initialize the LlamaGenerator with specified models.""" | |
self.logger = logging.getLogger(__name__) | |
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu") | |
self.default_config = default_generation_config or GenerationConfig() | |
self.logger.info(f"Initializing LlamaGenerator on device: {self.device}") | |
try: | |
self._initialize_models(llama_model_name, prm_model_path) | |
except Exception as e: | |
self.logger.error(f"Failed to initialize models: {str(e)}") | |
raise | |
def _initialize_models(self, llama_model_name: str, prm_model_path: str): | |
"""Initialize models with error handling and logging.""" | |
# Initialize LLaMA model and tokenizer | |
self.llama_tokenizer = AutoTokenizer.from_pretrained( | |
llama_model_name, | |
padding_side='left', | |
trust_remote_code=True | |
) | |
if self.llama_tokenizer.pad_token is None: | |
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token | |
self.llama_model = AutoModelForCausalLM.from_pretrained( | |
llama_model_name, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
# Initialize PRM model | |
self.prm_model = self._load_quantized_model(prm_model_path) | |
# Enable token streaming | |
self.supports_streaming = hasattr(self.llama_model, "streamer") | |
async def generate_stream( | |
self, | |
prompt: str, | |
config: Optional[GenerationConfig] = None | |
) -> AsyncGenerator[str, None]: | |
"""Stream tokens as they're generated.""" | |
if not self.supports_streaming: | |
raise NotImplementedError("This model doesn't support streaming") | |
config = config or self.default_config | |
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device) | |
async for token in self.llama_model.streamer(input_ids, **self._get_generation_kwargs(config)): | |
yield self.llama_tokenizer.decode([token]) | |
def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]: | |
"""Get generation kwargs based on config.""" | |
return { | |
"max_new_tokens": config.max_new_tokens, | |
"temperature": config.temperature, | |
"top_p": config.top_p, | |
"do_sample": config.temperature > 0, | |
} | |
def _load_quantized_model(self, model_path: str) -> Llama: | |
"""Load a quantized GGUF model using llama-cpp-python. | |
Args: | |
model_path (str): Path to the GGUF model file | |
Returns: | |
Llama: Loaded model instance | |
""" | |
try: | |
# Configure GPU layers if CUDA is available | |
n_gpu_layers = -1 if torch.cuda.is_available() else 0 | |
# Load the model | |
model = Llama( | |
model_path=model_path, | |
n_ctx=2048, # Context window | |
n_batch=512, # Batch size for prompt processing | |
n_gpu_layers=n_gpu_layers, # Number of layers to offload to GPU | |
verbose=False | |
) | |
self.logger.info(f"Successfully loaded GGUF model from {model_path}") | |
return model | |
except Exception as e: | |
self.logger.error(f"Failed to load GGUF model: {str(e)}") | |
raise | |
def _score_with_prm(self, text: str) -> float: | |
"""Score text using the PRM model. | |
Args: | |
text (str): Text to score | |
Returns: | |
float: Model score | |
""" | |
try: | |
# For GGUF models, we need to use the proper scoring interface | |
result = self.prm_model.eval(text) | |
return result['logprobs'] # Or another appropriate scoring metric | |
except Exception as e: | |
self.logger.error(f"Error scoring text with PRM: {str(e)}") | |
return float('-inf') # Return very low score on error | |
def _construct_prompt( | |
self, | |
context: str, | |
user_input: str, | |
chat_history: List[Tuple[str, str]], | |
max_history_turns: int = 3 | |
) -> str: | |
"""Construct a formatted prompt from the input components.""" | |
system_message = f"Please assist based on the following context: {context}" | |
prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>" | |
for user_msg, assistant_msg in chat_history[-max_history_turns:]: | |
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>" | |
prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>" | |
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|>" | |
prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n" | |
return prompt | |
def generate( | |
self, | |
prompt: str, | |
model_kwargs: Dict[str, Any], | |
strategy: str = "default", | |
num_samples: int = 5, | |
depth: int = 3, | |
breadth: int = 2 | |
) -> str: | |
"""Generate a response using the specified strategy. | |
Args: | |
prompt (str): The input prompt | |
model_kwargs (dict): Additional arguments for model.generate() | |
strategy (str): Generation strategy ('default', 'majority_voting', 'best_of_n', 'beam_search', 'dvts') | |
num_samples (int): Number of samples for applicable strategies | |
depth (int): Depth for DVTS strategy | |
breadth (int): Breadth for DVTS strategy | |
Returns: | |
str: Generated response | |
""" | |
if strategy == "default": | |
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device) | |
output = self.llama_model.generate(input_ids, **model_kwargs) | |
return self.llama_tokenizer.decode(output[0], skip_special_tokens=True) | |
elif strategy == "majority_voting": | |
outputs = [] | |
for _ in range(num_samples): | |
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device) | |
output = self.llama_model.generate(input_ids, **model_kwargs) | |
outputs.append(self.llama_tokenizer.decode(output[0], skip_special_tokens=True)) | |
return max(set(outputs), key=outputs.count) | |
elif strategy == "best_of_n": | |
scored_outputs = [] | |
for _ in range(num_samples): | |
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device) | |
output = self.llama_model.generate(input_ids, **model_kwargs) | |
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True) | |
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item() | |
scored_outputs.append((response, score)) | |
return max(scored_outputs, key=lambda x: x[1])[0] | |
elif strategy == "beam_search": | |
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device) | |
outputs = self.llama_model.generate( | |
input_ids, | |
num_beams=num_samples, | |
num_return_sequences=num_samples, | |
**model_kwargs | |
) | |
return [self.llama_tokenizer.decode(output, skip_special_tokens=True) for output in outputs] | |
elif strategy == "dvts": | |
results = [] | |
for _ in range(breadth): | |
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device) | |
output = self.llama_model.generate(input_ids, **model_kwargs) | |
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True) | |
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item() | |
results.append((response, score)) | |
for _ in range(depth - 1): | |
best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth] | |
for response, _ in best_responses: | |
input_ids = self.llama_tokenizer(response, return_tensors="pt").input_ids.to(self.device) | |
output = self.llama_model.generate(input_ids, **model_kwargs) | |
extended_response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True) | |
score = self.prm_model(**self.llama_tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item() | |
results.append((extended_response, score)) | |
return max(results, key=lambda x: x[1])[0] | |
else: | |
raise ValueError(f"Unknown strategy: {strategy}") | |
def generate_with_context( | |
self, | |
context: str, | |
user_input: str, | |
chat_history: List[Tuple[str, str]], | |
model_kwargs: Dict[str, Any], | |
max_history_turns: int = 3, | |
strategy: str = "default", | |
num_samples: int = 5, | |
depth: int = 3, | |
breadth: int = 2 | |
) -> str: | |
"""Generate a response using context and chat history. | |
Args: | |
context (str): Context for the conversation | |
user_input (str): Current user input | |
chat_history (List[Tuple[str, str]]): List of (user, assistant) message pairs | |
model_kwargs (dict): Additional arguments for model.generate() | |
max_history_turns (int): Maximum number of history turns to include | |
strategy (str): Generation strategy | |
num_samples (int): Number of samples for applicable strategies | |
depth (int): Depth for DVTS strategy | |
breadth (int): Breadth for DVTS strategy | |
Returns: | |
str: Generated response | |
""" | |
prompt = self._construct_prompt( | |
context, | |
user_input, | |
chat_history, | |
max_history_turns | |
) | |
return self.generate( | |
prompt, | |
model_kwargs, | |
strategy, | |
num_samples, | |
depth, | |
breadth | |
) | |
###################### | |
######### | |
################# | |
from fastapi import FastAPI, HTTPException, BackgroundTasks | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel, Field | |
from typing import List, Optional, Dict | |
import asyncio | |
import uuid | |
from datetime import datetime | |
import json | |
class ChatMessage(BaseModel): | |
role: str = Field(..., description="Role of the message sender (user/assistant)") | |
content: str = Field(..., description="Content of the message") | |
class GenerationRequest(BaseModel): | |
context: Optional[str] = Field(None, description="Context for the conversation") | |
messages: List[ChatMessage] = Field(..., description="Chat history") | |
config: Optional[Dict] = Field(None, description="Generation configuration") | |
stream: bool = Field(False, description="Whether to stream the response") | |
class GenerationResponse(BaseModel): | |
id: str = Field(..., description="Generation ID") | |
content: str = Field(..., description="Generated content") | |
created_at: datetime = Field(default_factory=datetime.now) | |
app = FastAPI(title="LLaMA Generation Service") | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Store generator instance | |
generator = None | |
async def startup_event(): | |
global generator | |
try: | |
generator = LlamaGenerator( | |
llama_model_name="meta-llama/Llama-3.2-1B-Instruct", | |
prm_model_path=prm_model_path, | |
default_generation_config=GenerationConfig( | |
max_new_tokens=100, | |
temperature=0.7 | |
) | |
) | |
except Exception as e: | |
print(f"Failed to initialize generator: {str(e)}") | |
raise | |
async def generate(request: GenerationRequest): | |
if not generator: | |
raise HTTPException(status_code=503, detail="Generator not initialized") | |
try: | |
# Format chat history | |
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]] | |
user_input = request.messages[-1].content | |
# Create generation config | |
config = GenerationConfig(**request.config) if request.config else None | |
# Generate response | |
response = await asyncio.to_thread( | |
generator.generate_with_context, | |
context=request.context or "", | |
user_input=user_input, | |
chat_history=chat_history, | |
model_kwargs={}, # Add any model-specific kwargs here | |
config=config | |
) | |
return GenerationResponse( | |
id=str(uuid.uuid4()), | |
content=response | |
) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def generate_stream(websocket): | |
await websocket.accept() | |
try: | |
while True: | |
# Receive and parse request | |
request_data = await websocket.receive_text() | |
request = GenerationRequest.parse_raw(request_data) | |
# Format chat history | |
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]] | |
user_input = request.messages[-1].content | |
# Create generation config | |
config = GenerationConfig(**request.config) if request.config else None | |
# Stream response | |
async for token in generator.generate_stream( | |
prompt=generator._construct_prompt( | |
context=request.context or "", | |
user_input=user_input, | |
chat_history=chat_history | |
), | |
config=config | |
): | |
await websocket.send_text(json.dumps({ | |
"token": token, | |
"finished": False | |
})) | |
# Send finished message | |
await websocket.send_text(json.dumps({ | |
"token": "", | |
"finished": True | |
})) | |
except Exception as e: | |
await websocket.send_text(json.dumps({ | |
"error": str(e) | |
})) | |
finally: | |
await websocket.close() | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) |