Spaces:
Running
Running
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from sentence_transformers import SentenceTransformer | |
import torch | |
import logging | |
from config.config import settings | |
logger = logging.getLogger(__name__) | |
class ModelService: | |
_instance = None | |
def __new__(cls): | |
if cls._instance is None: | |
cls._instance = super().__new__(cls) | |
cls._instance._initialized = False | |
return cls._instance | |
def __init__(self): | |
if not self._initialized: | |
self._initialized = True | |
self.tokenizer = None | |
self.model = None | |
self.embedder = None | |
self._load_models() | |
def _load_models(self): | |
try: | |
logger.info("Loading models...") | |
# Load tokenizer | |
#self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME) | |
self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME, use_fast=False) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
logger.info(f"Tokenizer for {settings.MODEL_NAME} loaded successfully.") | |
# Load language model | |
quantization_device = settings.DEVICE | |
quantization_bits = settings.QUANTIZATION_BITS | |
self.model = AutoModelForCausalLM.from_pretrained( | |
settings.MODEL_NAME, | |
torch_dtype=torch.float16 if quantization_device == "cuda" else torch.float32, | |
device_map="auto" if quantization_device == "cuda" else None, | |
# load_in_8bit=(quantization_bits == 8), | |
trust_remote_code=True | |
) | |
logger.info(f"Model {settings.MODEL_NAME} loaded successfully on {quantization_device}.") | |
# Load sentence embedder | |
self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL, device='cuda' if torch.cuda.is_available() else 'cpu') | |
#self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL) | |
logger.info(f"Embedder {settings.EMBEDDER_MODEL} loaded successfully.") | |
except Exception as e: | |
logger.error(f"Error loading models: {e}") | |
raise RuntimeError(f"Failed to initialize ModelService: {str(e)}") | |
def get_models(self): | |
""" | |
Returns the tokenizer, language model, and sentence embedder instances. | |
""" | |
if not self.tokenizer or not self.model or not self.embedder: | |
raise RuntimeError("Models are not fully loaded.") | |
return self.tokenizer, self.model, self.embedder | |