Chris4K commited on
Commit
057604e
·
verified ·
1 Parent(s): f1965d0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -23
app.py CHANGED
@@ -1,30 +1,85 @@
1
  import gradio as gr
2
- from diffusers import StableDiffusionPipeline
 
3
 
4
- # Load the Hugging Face model
5
- model_id = "kopyl/ui-icons-256"
6
- pipeline = StableDiffusionPipeline.from_pretrained(model_id)
7
- #pipeline.to("cuda") # Use GPU for faster inference, if available
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- def generate_icon(prompt):
10
- """Generate an icon from a text prompt."""
11
- result = pipeline(prompt).images[0] # Generate the image
12
- return result
13
-
14
- # Build Gradio Interface
15
- with gr.Blocks() as app:
16
- gr.Markdown("## 🖌️ Icon Generator App")
17
- gr.Markdown("Generate 256x256 icons using the `kopyl/ui-icons-256` model.")
18
-
19
- with gr.Row():
20
- prompt_input = gr.Textbox(label="Enter a prompt", placeholder="E.g., 'a colorful app icon for a weather app'")
21
- generate_button = gr.Button("Generate Icon")
22
 
23
- output_image = gr.Image(label="Generated Icon")
 
24
 
25
- def on_click(prompt):
26
- return generate_icon(prompt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- generate_button.click(on_click, inputs=prompt_input, outputs=output_image)
29
 
30
- app.launch() # Launch the app
 
 
 
 
1
  import gradio as gr
2
+ from diffusers import StableDiffusionXLImg2ImgPipeline
3
+ import torch
4
 
5
+ # Load a lightweight pipeline that works well on CPU
6
+ def load_image_generator():
7
+ try:
8
+ model = StableDiffusionXLImg2ImgPipeline.from_pretrained(
9
+ "stabilityai/stable-diffusion-xl-base-1.0",
10
+ torch_dtype=torch.float16,
11
+ variant="fp16",
12
+ use_safetensors=True
13
+ )
14
+ # Ensure it runs on CPU
15
+ model = model.to("cpu")
16
+ return model
17
+ except Exception as e:
18
+ print(f"Error loading model: {e}")
19
+ return None
20
 
21
+ # Generate chatbot icon
22
+ def generate_chatbot_icon(
23
+ prompt,
24
+ negative_prompt="low quality, bad composition, blurry",
25
+ num_inference_steps=20,
26
+ guidance_scale=7.5,
27
+ strength=0.75
28
+ ):
29
+ # Load the model
30
+ model = load_image_generator()
31
+ if model is None:
32
+ return None
 
33
 
34
+ # Default icon if no initial image
35
+ default_init_image = torch.randn((1, 3, 512, 512))
36
 
37
+ try:
38
+ # Generate the image
39
+ image = model(
40
+ prompt=prompt,
41
+ negative_prompt=negative_prompt,
42
+ num_inference_steps=num_inference_steps,
43
+ guidance_scale=guidance_scale,
44
+ strength=strength,
45
+ image=default_init_image
46
+ ).images[0]
47
+
48
+ return image
49
+ except Exception as e:
50
+ print(f"Error generating image: {e}")
51
+ return None
52
+
53
+ # Create Gradio interface
54
+ def create_gradio_interface():
55
+ with gr.Blocks() as demo:
56
+ gr.Markdown("# 🤖 Chatbot Icon Generator")
57
+
58
+ with gr.Row():
59
+ with gr.Column():
60
+ # Prompt input
61
+ prompt = gr.Textbox(
62
+ label="Icon Description",
63
+ value="Cute minimalist chatbot avatar, clean design, friendly expression, cartoon style"
64
+ )
65
+
66
+ # Generate button
67
+ generate_btn = gr.Button("Generate Icon")
68
+
69
+ with gr.Column():
70
+ # Output image
71
+ output_image = gr.Image(label="Generated Chatbot Icon")
72
+
73
+ # Connect generate button to function
74
+ generate_btn.click(
75
+ fn=generate_chatbot_icon,
76
+ inputs=[prompt],
77
+ outputs=[output_image]
78
+ )
79
 
80
+ return demo
81
 
82
+ # Launch the app
83
+ if __name__ == "__main__":
84
+ demo = create_gradio_interface()
85
+ demo.launch()