Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,85 @@
|
|
1 |
import gradio as gr
|
2 |
-
from diffusers import
|
|
|
3 |
|
4 |
-
# Load
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
generate_button = gr.Button("Generate Icon")
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load a lightweight pipeline that works well on CPU
|
6 |
+
def load_image_generator():
|
7 |
+
try:
|
8 |
+
model = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
9 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
10 |
+
torch_dtype=torch.float16,
|
11 |
+
variant="fp16",
|
12 |
+
use_safetensors=True
|
13 |
+
)
|
14 |
+
# Ensure it runs on CPU
|
15 |
+
model = model.to("cpu")
|
16 |
+
return model
|
17 |
+
except Exception as e:
|
18 |
+
print(f"Error loading model: {e}")
|
19 |
+
return None
|
20 |
|
21 |
+
# Generate chatbot icon
|
22 |
+
def generate_chatbot_icon(
|
23 |
+
prompt,
|
24 |
+
negative_prompt="low quality, bad composition, blurry",
|
25 |
+
num_inference_steps=20,
|
26 |
+
guidance_scale=7.5,
|
27 |
+
strength=0.75
|
28 |
+
):
|
29 |
+
# Load the model
|
30 |
+
model = load_image_generator()
|
31 |
+
if model is None:
|
32 |
+
return None
|
|
|
33 |
|
34 |
+
# Default icon if no initial image
|
35 |
+
default_init_image = torch.randn((1, 3, 512, 512))
|
36 |
|
37 |
+
try:
|
38 |
+
# Generate the image
|
39 |
+
image = model(
|
40 |
+
prompt=prompt,
|
41 |
+
negative_prompt=negative_prompt,
|
42 |
+
num_inference_steps=num_inference_steps,
|
43 |
+
guidance_scale=guidance_scale,
|
44 |
+
strength=strength,
|
45 |
+
image=default_init_image
|
46 |
+
).images[0]
|
47 |
+
|
48 |
+
return image
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Error generating image: {e}")
|
51 |
+
return None
|
52 |
+
|
53 |
+
# Create Gradio interface
|
54 |
+
def create_gradio_interface():
|
55 |
+
with gr.Blocks() as demo:
|
56 |
+
gr.Markdown("# 🤖 Chatbot Icon Generator")
|
57 |
+
|
58 |
+
with gr.Row():
|
59 |
+
with gr.Column():
|
60 |
+
# Prompt input
|
61 |
+
prompt = gr.Textbox(
|
62 |
+
label="Icon Description",
|
63 |
+
value="Cute minimalist chatbot avatar, clean design, friendly expression, cartoon style"
|
64 |
+
)
|
65 |
+
|
66 |
+
# Generate button
|
67 |
+
generate_btn = gr.Button("Generate Icon")
|
68 |
+
|
69 |
+
with gr.Column():
|
70 |
+
# Output image
|
71 |
+
output_image = gr.Image(label="Generated Chatbot Icon")
|
72 |
+
|
73 |
+
# Connect generate button to function
|
74 |
+
generate_btn.click(
|
75 |
+
fn=generate_chatbot_icon,
|
76 |
+
inputs=[prompt],
|
77 |
+
outputs=[output_image]
|
78 |
+
)
|
79 |
|
80 |
+
return demo
|
81 |
|
82 |
+
# Launch the app
|
83 |
+
if __name__ == "__main__":
|
84 |
+
demo = create_gradio_interface()
|
85 |
+
demo.launch()
|