File size: 8,030 Bytes
205dacf
 
 
 
 
e1e7413
 
205dacf
 
 
 
 
 
 
 
e1e7413
205dacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e7413
205dacf
 
 
 
e1e7413
205dacf
 
 
 
 
 
 
 
 
 
 
e1e7413
 
 
 
205dacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e7413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205dacf
 
 
 
 
 
 
 
 
e1e7413
205dacf
e1e7413
 
 
 
 
205dacf
 
 
 
e1e7413
 
205dacf
e1e7413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205dacf
e1e7413
 
205dacf
 
e1e7413
 
205dacf
 
 
 
e1e7413
 
 
205dacf
 
 
 
 
 
 
 
e1e7413
 
205dacf
 
 
 
e1e7413
 
205dacf
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e7413
205dacf
 
e1e7413
205dacf
 
 
 
 
e1e7413
205dacf
e1e7413
 
 
205dacf
 
 
 
e1e7413
 
 
 
 
 
 
 
 
 
205dacf
 
 
 
 
 
 
 
e1e7413
 
205dacf
 
 
 
e1e7413
 
205dacf
 
 
 
816d29b
 
 
205dacf
 
 
 
 
 
 
 
e1e7413
 
 
 
 
73e6b7b
e1e7413
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
import os
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from dataclasses import dataclass
from typing import List, Dict, Any, Optional
import torch

@dataclass
class AppConfig:
    """Configuration for the chat application"""
    MODEL_NAME: str = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
    MAX_LENGTH: int = 4096
    DEFAULT_TEMP: float = 0.7
    CHAT_HEIGHT: int = 450
    PAD_TOKEN: str = "[PAD]"

CHAT_TEMPLATE = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}
{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}
{%- for message in messages -%}
    {%- if message['role'] == 'user' -%}
        <|User|>{{message['content']}}
    {%- endif -%}
    {%- if message['role'] == 'assistant' and message['content'] is not none -%}
        {% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}<|Assistant|>{{content}}<|end▁of▁sentence|>
    {%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt %}<|Assistant|>{% endif -%}"""

CSS = """
:root {
    --primary-color: #1565c0;
    --secondary-color: #1976d2;
    --text-primary: rgba(0, 0, 0, 0.87);
    --text-secondary: rgba(0, 0, 0, 0.65);
    --spacing-lg: 30px;
    --border-radius: 100vh;
    --shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
}

.container {
    max-width: 1200px;
    margin: 0 auto;
    padding: var(--spacing-lg);
}

.header {
    text-align: center;
    margin-bottom: var(--spacing-lg);
    padding: 20px;
    background: var(--primary-color);
    color: white;
    border-radius: 8px;
}

.header h1 {
    font-size: 28px;
    margin-bottom: 8px;
}

.header p {
    font-size: 18px;
    opacity: 0.9;
}

#chatbot {
    border-radius: 8px;
    background: white;
    box-shadow: var(--shadow);
}

.message {
    padding: 12px 16px;
    border-radius: 8px;
    margin: 8px 0;
}

.user-message {
    background: var(--primary-color);
    color: white;
}

.assistant-message {
    background: #f5f5f5;
}
"""

class ChatBot:
    def __init__(self, config: AppConfig):
        self.config = config
        self.setup_model()

    def setup_model(self):
        """Initialize the model and tokenizer with proper configuration"""
        self.tokenizer = AutoTokenizer.from_pretrained(self.config.MODEL_NAME)
        
        # Add pad token if it doesn't exist
        if self.tokenizer.pad_token is None:
            self.tokenizer.add_special_tokens({'pad_token': self.config.PAD_TOKEN})
            
        self.tokenizer.chat_template = CHAT_TEMPLATE

        self.model = AutoModelForCausalLM.from_pretrained(
            self.config.MODEL_NAME,
            device_map="auto",
            torch_dtype=torch.float16  # Use half precision for better memory efficiency
        )
        
        # Resize token embeddings if needed
        self.model.resize_token_embeddings(len(self.tokenizer))

    def _convert_history_to_messages(self, history: List[tuple]) -> List[Dict[str, str]]:
        """Convert tuple history to message format"""
        messages = []
        for user, assistant in history:
            messages.extend([
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant}
            ])
        return messages

    def generate_response(self, 
                         message: str,
                         history: List[tuple],
                         temperature: float,
                         max_new_tokens: int) -> str:
        """Generate streaming response with improved error handling and attention mask"""
        try:
            # Convert history to messages format
            conversation = self._convert_history_to_messages(history)
            conversation.append({"role": "user", "content": message})

            # Prepare input with attention mask
            inputs = self.tokenizer.apply_chat_template(
                conversation,
                return_tensors="pt",
                add_generation_prompt=True
            ).to(self.model.device)
            
            attention_mask = torch.ones_like(inputs)
            
            streamer = TextIteratorStreamer(
                self.tokenizer,
                timeout=10.0,
                skip_prompt=True,
                skip_special_tokens=True
            )

            generate_kwargs = {
                "input_ids": inputs,
                "attention_mask": attention_mask,
                "streamer": streamer,
                "max_new_tokens": max_new_tokens,
                "do_sample": temperature > 0,
                "temperature": temperature,
                "pad_token_id": self.tokenizer.pad_token_id,
                "eos_token_id": self.tokenizer.eos_token_id,
            }

            thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
            thread.start()

            return "".join([chunk for chunk in self._process_stream(streamer)])

        except Exception as e:
            return f"Error generating response: {str(e)}"

    def _process_stream(self, streamer) -> str:
        """Process the streaming output with improved text cleaning"""
        outputs = []
        for text in streamer:
            # Clean special tokens and normalize whitespace
            text = (text.replace("<think>", "[think]")
                      .replace("</think>", "[/think]")
                      .replace("<|end▁of▁sentence|>", "")
                      .strip())
            outputs.append(text)
            yield "".join(outputs)

def create_gradio_interface(chatbot: ChatBot):
    """Create the Gradio interface with improved layout and modern message format"""
    examples = [
        ['Tell me about artificial intelligence.'],
        ['What are neural networks?'],
        ['Explain machine learning in simple terms.']
    ]

    with gr.Blocks(css=CSS) as demo:
        with gr.Column(elem_classes="container"):
            with gr.Column(elem_classes="header"):
                gr.Markdown("# DeepSeek R1 Chat Interface")
                gr.Markdown("An efficient and responsive chat interface powered by DeepSeek R1 Distill")

            chatbot_interface = gr.Chatbot(
                height=chatbot.config.CHAT_HEIGHT,
                container=True,
                elem_id="chatbot",
                type="messages"  # Use modern message format
            )

            interface = gr.ChatInterface(
                fn=chatbot.generate_response,
                chatbot=chatbot_interface,
                additional_inputs=[
                    gr.Slider(
                        minimum=0, maximum=1,
                        value=chatbot.config.DEFAULT_TEMP,
                        label="Temperature",
                        info="Higher values make the output more random"
                    ),
                    gr.Slider(
                        minimum=128, maximum=chatbot.config.MAX_LENGTH,
                        value=1024,
                        label="Max new tokens",
                        info="Maximum length of the generated response"
                    ),
                ],
                examples=examples,
                cache_examples=False,
                #retry_btn="Regenerate Response",
                #undo_btn="Undo Last",
                #clear_btn="Clear Chat",
            )

    return demo

if __name__ == "__main__":
    config = AppConfig()
    chatbot = ChatBot(config)
    demo = create_gradio_interface(chatbot)
    demo.launch(
        debug=True,
        share=False,  # Set to True to create a public link
        server_name="0.0.0.0",
        server_port=7860,
       # ssr=False  # Disable SSR to avoid experimental features
    )