File size: 8,030 Bytes
205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf e1e7413 205dacf 816d29b 205dacf e1e7413 73e6b7b e1e7413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import os
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from dataclasses import dataclass
from typing import List, Dict, Any, Optional
import torch
@dataclass
class AppConfig:
"""Configuration for the chat application"""
MODEL_NAME: str = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
MAX_LENGTH: int = 4096
DEFAULT_TEMP: float = 0.7
CHAT_HEIGHT: int = 450
PAD_TOKEN: str = "[PAD]"
CHAT_TEMPLATE = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}
{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}
{%- for message in messages -%}
{%- if message['role'] == 'user' -%}
<|User|>{{message['content']}}
{%- endif -%}
{%- if message['role'] == 'assistant' and message['content'] is not none -%}
{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}<|Assistant|>{{content}}<|end▁of▁sentence|>
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt %}<|Assistant|>{% endif -%}"""
CSS = """
:root {
--primary-color: #1565c0;
--secondary-color: #1976d2;
--text-primary: rgba(0, 0, 0, 0.87);
--text-secondary: rgba(0, 0, 0, 0.65);
--spacing-lg: 30px;
--border-radius: 100vh;
--shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: var(--spacing-lg);
}
.header {
text-align: center;
margin-bottom: var(--spacing-lg);
padding: 20px;
background: var(--primary-color);
color: white;
border-radius: 8px;
}
.header h1 {
font-size: 28px;
margin-bottom: 8px;
}
.header p {
font-size: 18px;
opacity: 0.9;
}
#chatbot {
border-radius: 8px;
background: white;
box-shadow: var(--shadow);
}
.message {
padding: 12px 16px;
border-radius: 8px;
margin: 8px 0;
}
.user-message {
background: var(--primary-color);
color: white;
}
.assistant-message {
background: #f5f5f5;
}
"""
class ChatBot:
def __init__(self, config: AppConfig):
self.config = config
self.setup_model()
def setup_model(self):
"""Initialize the model and tokenizer with proper configuration"""
self.tokenizer = AutoTokenizer.from_pretrained(self.config.MODEL_NAME)
# Add pad token if it doesn't exist
if self.tokenizer.pad_token is None:
self.tokenizer.add_special_tokens({'pad_token': self.config.PAD_TOKEN})
self.tokenizer.chat_template = CHAT_TEMPLATE
self.model = AutoModelForCausalLM.from_pretrained(
self.config.MODEL_NAME,
device_map="auto",
torch_dtype=torch.float16 # Use half precision for better memory efficiency
)
# Resize token embeddings if needed
self.model.resize_token_embeddings(len(self.tokenizer))
def _convert_history_to_messages(self, history: List[tuple]) -> List[Dict[str, str]]:
"""Convert tuple history to message format"""
messages = []
for user, assistant in history:
messages.extend([
{"role": "user", "content": user},
{"role": "assistant", "content": assistant}
])
return messages
def generate_response(self,
message: str,
history: List[tuple],
temperature: float,
max_new_tokens: int) -> str:
"""Generate streaming response with improved error handling and attention mask"""
try:
# Convert history to messages format
conversation = self._convert_history_to_messages(history)
conversation.append({"role": "user", "content": message})
# Prepare input with attention mask
inputs = self.tokenizer.apply_chat_template(
conversation,
return_tensors="pt",
add_generation_prompt=True
).to(self.model.device)
attention_mask = torch.ones_like(inputs)
streamer = TextIteratorStreamer(
self.tokenizer,
timeout=10.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = {
"input_ids": inputs,
"attention_mask": attention_mask,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": temperature > 0,
"temperature": temperature,
"pad_token_id": self.tokenizer.pad_token_id,
"eos_token_id": self.tokenizer.eos_token_id,
}
thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
thread.start()
return "".join([chunk for chunk in self._process_stream(streamer)])
except Exception as e:
return f"Error generating response: {str(e)}"
def _process_stream(self, streamer) -> str:
"""Process the streaming output with improved text cleaning"""
outputs = []
for text in streamer:
# Clean special tokens and normalize whitespace
text = (text.replace("<think>", "[think]")
.replace("</think>", "[/think]")
.replace("<|end▁of▁sentence|>", "")
.strip())
outputs.append(text)
yield "".join(outputs)
def create_gradio_interface(chatbot: ChatBot):
"""Create the Gradio interface with improved layout and modern message format"""
examples = [
['Tell me about artificial intelligence.'],
['What are neural networks?'],
['Explain machine learning in simple terms.']
]
with gr.Blocks(css=CSS) as demo:
with gr.Column(elem_classes="container"):
with gr.Column(elem_classes="header"):
gr.Markdown("# DeepSeek R1 Chat Interface")
gr.Markdown("An efficient and responsive chat interface powered by DeepSeek R1 Distill")
chatbot_interface = gr.Chatbot(
height=chatbot.config.CHAT_HEIGHT,
container=True,
elem_id="chatbot",
type="messages" # Use modern message format
)
interface = gr.ChatInterface(
fn=chatbot.generate_response,
chatbot=chatbot_interface,
additional_inputs=[
gr.Slider(
minimum=0, maximum=1,
value=chatbot.config.DEFAULT_TEMP,
label="Temperature",
info="Higher values make the output more random"
),
gr.Slider(
minimum=128, maximum=chatbot.config.MAX_LENGTH,
value=1024,
label="Max new tokens",
info="Maximum length of the generated response"
),
],
examples=examples,
cache_examples=False,
#retry_btn="Regenerate Response",
#undo_btn="Undo Last",
#clear_btn="Clear Chat",
)
return demo
if __name__ == "__main__":
config = AppConfig()
chatbot = ChatBot(config)
demo = create_gradio_interface(chatbot)
demo.launch(
debug=True,
share=False, # Set to True to create a public link
server_name="0.0.0.0",
server_port=7860,
# ssr=False # Disable SSR to avoid experimental features
) |