File size: 4,471 Bytes
ccb8edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d0bee3
 
 
 
 
 
ccb8edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import time
import pdfplumber
import docx
import nltk
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTextSplitter
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
from nltk import sent_tokenize
from typing import List, Tuple
from transformers import AutoModel, AutoTokenizer

import spacy
spacy.cli.download("en_core_web_sm")  # Ensure the model is available
nlp = spacy.load("en_core_web_sm")    # Load the model



# Ensure nltk sentence tokenizer is downloaded
nltk.download('punkt')

FILES_DIR = './files'

# Supported embedding models
MODELS = {
    'e5-base': "danielheinz/e5-base-sts-en-de",
    'multilingual-e5-base': "multilingual-e5-base",
    'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
    'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
    'gte-large': "gte-large",
    'gbert-base': "gbert-base"
}

class FileHandler:
    @staticmethod
    def extract_text(file_path):
        ext = os.path.splitext(file_path)[-1].lower()
        if ext == '.pdf':
            return FileHandler._extract_from_pdf(file_path)
        elif ext == '.docx':
            return FileHandler._extract_from_docx(file_path)
        elif ext == '.txt':
            return FileHandler._extract_from_txt(file_path)
        else:
            raise ValueError(f"Unsupported file type: {ext}")

    @staticmethod
    def _extract_from_pdf(file_path):
        with pdfplumber.open(file_path) as pdf:
            return ' '.join([page.extract_text() for page in pdf.pages])

    @staticmethod
    def _extract_from_docx(file_path):
        doc = docx.Document(file_path)
        return ' '.join([para.text for para in doc.paragraphs])

    @staticmethod
    def _extract_from_txt(file_path):
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read()

class EmbeddingModel:
    def __init__(self, model_name, max_tokens=None):
        self.model = HuggingFaceEmbeddings(model_name=model_name)
        self.max_tokens = max_tokens

    def embed(self, text):
        return self.model.embed_documents([text])

def process_files(model_name, split_strategy, chunk_size=500, overlap_size=50, max_tokens=None):
    # File processing
    text = ""
    for file in os.listdir(FILES_DIR):
        file_path = os.path.join(FILES_DIR, file)
        text += FileHandler.extract_text(file_path)

    # Split text
    if split_strategy == 'sentence':
        splitter = SentenceTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
    else:
        splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
    
    chunks = splitter.split_text(text)
    model = EmbeddingModel(MODELS[model_name], max_tokens=max_tokens)
    embeddings = model.embed(text)
    
    return embeddings, chunks

def search_embeddings(query, model_name, top_k):
    model = HuggingFaceEmbeddings(model_name=MODELS[model_name])
    embeddings = model.embed_query(query)
    return embeddings

def calculate_statistics(embeddings):
    # Return time taken, token count, etc.
    return {"tokens": len(embeddings), "time_taken": time.time()}

# Gradio frontend
def upload_file(file, model_name, split_strategy, chunk_size, overlap_size, max_tokens, query, top_k):
    with open(os.path.join(FILES_DIR, file.name), "wb") as f:
        f.write(file.read())

    # Process files and get embeddings
    embeddings, chunks = process_files(model_name, split_strategy, chunk_size, overlap_size, max_tokens)

    # Perform search
    results = search_embeddings(query, model_name, top_k)

    # Calculate statistics
    stats = calculate_statistics(embeddings)
    
    return {"results": results, "stats": stats}

# Gradio interface
iface = gr.Interface(
    fn=upload_file,
    inputs=[
        gr.File(label="Upload File"),
        gr.Dropdown(choices=list(MODELS.keys()), label="Embedding Model"),
        gr.Radio(choices=["sentence", "recursive"], label="Split Strategy"),
        gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
        gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
        gr.Slider(50, 500, step=50, value=200, label="Max Tokens"),
        gr.Textbox(label="Search Query"),
        gr.Slider(1, 10, step=1, value=5, label="Top K")
    ],
    outputs="json"
)

iface.launch()