Chris4K's picture
Update ner_tool.py
e607aa8
raw
history blame
2.52 kB
from transformers import pipeline
from transformers import Tool
class NamedEntityRecognitionTool(Tool):
name = "ner_tool"
description = "Identifies and labels various entities in a given text."
inputs = ["text"]
outputs = ["text"]
def __call__(self, text: str):
# Initialize the named entity recognition pipeline
ner_analyzer = pipeline("ner")
# Perform named entity recognition on the input text
entities = ner_analyzer(text)
# Categorize entities based on labels into different types
categorized_entities = {
"persons": [],
"organizations": [],
"locations": [],
"dates": [],
"times": [],
"money": [],
"percentages": [],
"numbers": [],
"ordinals": [],
"miscellaneous": [],
}
for entity in entities:
label = entity.get("entity", "UNKNOWN")
word = entity.get("word", "")
start = entity.get("start", -1)
end = entity.get("end", -1)
# Extract the complete entity text
entity_text = text[start:end].strip()
if label.startswith("I-PER"):
categorized_entities["persons"].append(entity_text)
elif label.startswith("I-ORG"):
categorized_entities["organizations"].append(entity_text)
elif label.startswith("I-LOC"):
categorized_entities["locations"].append(entity_text)
elif label.startswith("I-DATE"):
categorized_entities["dates"].append(entity_text)
elif label.startswith("I-TIME"):
categorized_entities["times"].append(entity_text)
elif label.startswith("I-MONEY"):
categorized_entities["money"].append(entity_text)
elif label.startswith("I-PERCENT"):
categorized_entities["percentages"].append(entity_text)
elif label.startswith("I-CARDINAL"):
categorized_entities["numbers"].append(entity_text)
elif label.startswith("I-ORDINAL"):
categorized_entities["ordinals"].append(entity_text)
else:
categorized_entities["miscellaneous"].append(entity_text)
# Print the identified entities
print(f"Categorized Entities: {categorized_entities}")
return {"entities": categorized_entities} # Return a dictionary with the specified output component