Spaces:
Sleeping
Sleeping
Update ner_tool.py
Browse files- ner_tool.py +44 -7
ner_tool.py
CHANGED
@@ -5,7 +5,7 @@ from transformers import Tool
|
|
5 |
|
6 |
class NamedEntityRecognitionTool(Tool):
|
7 |
name = "ner_tool"
|
8 |
-
description = "Identifies and labels entities
|
9 |
inputs = ["text"]
|
10 |
outputs = ["text"]
|
11 |
|
@@ -16,13 +16,50 @@ class NamedEntityRecognitionTool(Tool):
|
|
16 |
# Perform named entity recognition on the input text
|
17 |
entities = ner_analyzer(text)
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Print the identified entities
|
26 |
-
print(f"
|
27 |
|
28 |
-
return {"entities":
|
|
|
5 |
|
6 |
class NamedEntityRecognitionTool(Tool):
|
7 |
name = "ner_tool"
|
8 |
+
description = "Identifies and labels various entities in a given text."
|
9 |
inputs = ["text"]
|
10 |
outputs = ["text"]
|
11 |
|
|
|
16 |
# Perform named entity recognition on the input text
|
17 |
entities = ner_analyzer(text)
|
18 |
|
19 |
+
# Categorize entities based on labels into different types
|
20 |
+
categorized_entities = {
|
21 |
+
"persons": [],
|
22 |
+
"organizations": [],
|
23 |
+
"locations": [],
|
24 |
+
"dates": [],
|
25 |
+
"times": [],
|
26 |
+
"money": [],
|
27 |
+
"percentages": [],
|
28 |
+
"numbers": [],
|
29 |
+
"ordinals": [],
|
30 |
+
"miscellaneous": [],
|
31 |
+
}
|
32 |
|
33 |
+
for entity in entities:
|
34 |
+
label = entity.get("entity", "UNKNOWN")
|
35 |
+
word = entity.get("word", "")
|
36 |
+
start = entity.get("start", -1)
|
37 |
+
end = entity.get("end", -1)
|
38 |
+
|
39 |
+
entity_text = text[start:end].strip()
|
40 |
+
|
41 |
+
if label.startswith("I-PER"):
|
42 |
+
categorized_entities["persons"].append(entity_text)
|
43 |
+
elif label.startswith("I-ORG"):
|
44 |
+
categorized_entities["organizations"].append(entity_text)
|
45 |
+
elif label.startswith("I-LOC"):
|
46 |
+
categorized_entities["locations"].append(entity_text)
|
47 |
+
elif label.startswith("I-DATE"):
|
48 |
+
categorized_entities["dates"].append(entity_text)
|
49 |
+
elif label.startswith("I-TIME"):
|
50 |
+
categorized_entities["times"].append(entity_text)
|
51 |
+
elif label.startswith("I-MONEY"):
|
52 |
+
categorized_entities["money"].append(entity_text)
|
53 |
+
elif label.startswith("I-PERCENT"):
|
54 |
+
categorized_entities["percentages"].append(entity_text)
|
55 |
+
elif label.startswith("I-CARDINAL"):
|
56 |
+
categorized_entities["numbers"].append(entity_text)
|
57 |
+
elif label.startswith("I-ORDINAL"):
|
58 |
+
categorized_entities["ordinals"].append(entity_text)
|
59 |
+
else:
|
60 |
+
categorized_entities["miscellaneous"].append(entity_text)
|
61 |
|
62 |
# Print the identified entities
|
63 |
+
print(f"Categorized Entities: {categorized_entities}")
|
64 |
|
65 |
+
return {"entities": categorized_entities} # Return a dictionary with the specified output component
|