Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ import gradio as gr
|
|
4 |
|
5 |
|
6 |
from langfuse import Langfuse
|
|
|
|
|
7 |
|
8 |
langfuse = Langfuse(
|
9 |
secret_key="sk-lf-229e10c5-6210-4a4b-a432-0f17bc66e56c",
|
@@ -11,6 +13,8 @@ langfuse = Langfuse(
|
|
11 |
host="https://chris4k-langfuse-template-space.hf.space"
|
12 |
)
|
13 |
|
|
|
|
|
14 |
# Load Llama 3.2 model
|
15 |
model_name = "meta-llama/Llama-3.2-3B-Instruct" # Replace with the exact model path
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -117,6 +121,7 @@ def construct_prompt(user_input, context, chat_history, max_history_turns=1): #
|
|
117 |
print(prompt)
|
118 |
return prompt
|
119 |
|
|
|
120 |
def chat_with_model(user_input, chat_history=[]):
|
121 |
# Search for relevant products
|
122 |
search_results = search_products(user_input)
|
@@ -136,9 +141,26 @@ def chat_with_model(user_input, chat_history=[]):
|
|
136 |
else:
|
137 |
context = "Das weiß ich nicht."
|
138 |
print("context: ------------------------------------- \n"+context)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
# Pass both user_input and context to construct_prompt
|
140 |
prompt = construct_prompt(user_input, context, chat_history) # This line is changed
|
141 |
print("prompt: ------------------------------------- \n"+prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=4096).to("cpu")
|
143 |
tokenizer.pad_token = tokenizer.eos_token
|
144 |
attention_mask = torch.ones_like(input_ids).to("cpu")
|
@@ -146,7 +168,16 @@ def chat_with_model(user_input, chat_history=[]):
|
|
146 |
max_new_tokens=1200, do_sample=True,
|
147 |
top_k=50, temperature=0.7)
|
148 |
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
|
|
|
|
149 |
print("respone: ------------------------------------- \n"+response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
chat_history.append((context, response)) # or chat_history.append((user_input, response)) if you want to store user input
|
151 |
return response, chat_history
|
152 |
|
|
|
4 |
|
5 |
|
6 |
from langfuse import Langfuse
|
7 |
+
from langfuse.decorators import observe
|
8 |
+
|
9 |
|
10 |
langfuse = Langfuse(
|
11 |
secret_key="sk-lf-229e10c5-6210-4a4b-a432-0f17bc66e56c",
|
|
|
13 |
host="https://chris4k-langfuse-template-space.hf.space"
|
14 |
)
|
15 |
|
16 |
+
|
17 |
+
|
18 |
# Load Llama 3.2 model
|
19 |
model_name = "meta-llama/Llama-3.2-3B-Instruct" # Replace with the exact model path
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
121 |
print(prompt)
|
122 |
return prompt
|
123 |
|
124 |
+
@observe()
|
125 |
def chat_with_model(user_input, chat_history=[]):
|
126 |
# Search for relevant products
|
127 |
search_results = search_products(user_input)
|
|
|
141 |
else:
|
142 |
context = "Das weiß ich nicht."
|
143 |
print("context: ------------------------------------- \n"+context)
|
144 |
+
|
145 |
+
langfuse.observe(
|
146 |
+
name="search_products",
|
147 |
+
input={"query": user_input},
|
148 |
+
output={"context": context},
|
149 |
+
metadata={"search_results_found": len(search_results) if search_results else 0}
|
150 |
+
)
|
151 |
+
|
152 |
+
|
153 |
# Pass both user_input and context to construct_prompt
|
154 |
prompt = construct_prompt(user_input, context, chat_history) # This line is changed
|
155 |
print("prompt: ------------------------------------- \n"+prompt)
|
156 |
+
|
157 |
+
# LangFuse observation: Log prompt construction
|
158 |
+
langfuse.observe(
|
159 |
+
name="construct_prompt",
|
160 |
+
input={"user_input": user_input, "context": context, "chat_history": chat_history},
|
161 |
+
output={"prompt": prompt}
|
162 |
+
)
|
163 |
+
|
164 |
input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=4096).to("cpu")
|
165 |
tokenizer.pad_token = tokenizer.eos_token
|
166 |
attention_mask = torch.ones_like(input_ids).to("cpu")
|
|
|
168 |
max_new_tokens=1200, do_sample=True,
|
169 |
top_k=50, temperature=0.7)
|
170 |
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
171 |
+
|
172 |
+
|
173 |
print("respone: ------------------------------------- \n"+response)
|
174 |
+
# LangFuse observation: Log LLM response
|
175 |
+
langfuse.observe(
|
176 |
+
name="llm_response",
|
177 |
+
input={"prompt": prompt},
|
178 |
+
output={"response": response},
|
179 |
+
metadata={"response_length": len(response)}
|
180 |
+
)
|
181 |
chat_history.append((context, response)) # or chat_history.append((user_input, response)) if you want to store user input
|
182 |
return response, chat_history
|
183 |
|