Chris4K commited on
Commit
dc012ce
·
verified ·
1 Parent(s): 0b2b447

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -15
app.py CHANGED
@@ -4,19 +4,15 @@ import gradio as gr
4
  from langfuse import Langfuse
5
  from langfuse.decorators import observe, langfuse_context
6
  import os
 
 
 
 
7
 
8
  # Initialize Langfuse
9
- #langfuse = Langfuse(
10
- # secret_key="sk-lf-229e10c5-6210-4a4b-a432-0f17bc66e56c",
11
- # public_key="pk-lf-9f2c32d2-266f-421d-9b87-51377f0a268c",
12
- # host="https://chris4k-langfuse-template-space.hf.space"
13
- #)
14
-
15
- # Get keys for your project from the project settings page
16
- # https://cloud.langfuse.com
17
  os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-9f2c32d2-266f-421d-9b87-51377f0a268c"
18
  os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-229e10c5-6210-4a4b-a432-0f17bc66e56c"
19
- os.environ["LANGFUSE_HOST"] = "https://chris4k-langfuse-template-space.hf.space" # 🇪🇺 EU region
20
 
21
  langfuse = Langfuse()
22
 
@@ -26,10 +22,6 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
26
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map=None, torch_dtype=torch.float32)
27
 
28
  # Load FAISS and Embeddings
29
- import faiss
30
- import pandas as pd
31
- from sentence_transformers import SentenceTransformer
32
-
33
  embedder = SentenceTransformer('distiluse-base-multilingual-cased')
34
  url = 'https://www.bofrost.de/datafeed/DE/products.csv'
35
  data = pd.read_csv(url, sep='|')
@@ -67,6 +59,22 @@ def construct_prompt(user_input, context, chat_history, max_history_turns=1):
67
  # Main function to interact with the model
68
  @observe()
69
  def chat_with_model(user_input, chat_history=[]):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  # Search for products
71
  search_results = search_products(user_input)
72
  if search_results:
@@ -76,18 +84,40 @@ def chat_with_model(user_input, chat_history=[]):
76
  else:
77
  context = "Das weiß ich nicht."
78
 
 
 
 
 
 
 
 
79
  langfuse_context.update_current_observation(
80
  input={"query": user_input},
81
  output={"context": context},
82
  metadata={"search_results_found": len(search_results)}
83
  )
84
 
85
- # Generate prompt
86
  prompt = construct_prompt(user_input, context, chat_history)
87
  input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=4096)
 
 
 
 
 
 
 
 
88
  outputs = model.generate(input_ids, max_new_tokens=1200, do_sample=True, top_k=50, temperature=0.7)
89
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
90
 
 
91
  langfuse_context.update_current_observation(
92
  usage_details={
93
  "input_tokens": len(input_ids[0]),
@@ -95,7 +125,16 @@ def chat_with_model(user_input, chat_history=[]):
95
  }
96
  )
97
 
 
98
  chat_history.append((user_input, response))
 
 
 
 
 
 
 
 
99
  return response, chat_history
100
 
101
  # Gradio interface
@@ -104,7 +143,7 @@ def gradio_interface(user_input, history):
104
  return response, updated_history
105
 
106
  with gr.Blocks() as demo:
107
- gr.Markdown("# 🦙 Llama Instruct Chat with LangFuse Integration")
108
  user_input = gr.Textbox(label="Your Message", lines=2)
109
  submit_btn = gr.Button("Send")
110
  chat_history = gr.State([])
 
4
  from langfuse import Langfuse
5
  from langfuse.decorators import observe, langfuse_context
6
  import os
7
+ import faiss
8
+ import pandas as pd
9
+ from sentence_transformers import SentenceTransformer
10
+ import datetime
11
 
12
  # Initialize Langfuse
 
 
 
 
 
 
 
 
13
  os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-9f2c32d2-266f-421d-9b87-51377f0a268c"
14
  os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-229e10c5-6210-4a4b-a432-0f17bc66e56c"
15
+ os.environ["LANGFUSE_HOST"] = "https://chris4k-langfuse-template-space.hf.space" # 🇪🇺 EU region
16
 
17
  langfuse = Langfuse()
18
 
 
22
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map=None, torch_dtype=torch.float32)
23
 
24
  # Load FAISS and Embeddings
 
 
 
 
25
  embedder = SentenceTransformer('distiluse-base-multilingual-cased')
26
  url = 'https://www.bofrost.de/datafeed/DE/products.csv'
27
  data = pd.read_csv(url, sep='|')
 
59
  # Main function to interact with the model
60
  @observe()
61
  def chat_with_model(user_input, chat_history=[]):
62
+ # Start trace for the entire chat process
63
+ trace = langfuse.trace(
64
+ name="ai-chat-execution",
65
+ user_id="user_12345",
66
+ metadata={"email": "[email protected]"},
67
+ tags=["chat", "product-query"],
68
+ release="v1.0.0"
69
+ )
70
+
71
+ # Span for product search
72
+ retrieval_span = trace.span(
73
+ name="product-retrieval",
74
+ metadata={"source": "faiss-index"},
75
+ input={"query": user_input}
76
+ )
77
+
78
  # Search for products
79
  search_results = search_products(user_input)
80
  if search_results:
 
84
  else:
85
  context = "Das weiß ich nicht."
86
 
87
+ # End product search span with results
88
+ retrieval_span.end(
89
+ output={"search_results": search_results},
90
+ status_message=f"Found {len(search_results)} products"
91
+ )
92
+
93
+ # Update trace with search context
94
  langfuse_context.update_current_observation(
95
  input={"query": user_input},
96
  output={"context": context},
97
  metadata={"search_results_found": len(search_results)}
98
  )
99
 
100
+ # Generate prompt for Llama model
101
  prompt = construct_prompt(user_input, context, chat_history)
102
  input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=4096)
103
+
104
+ # Span for AI generation
105
+ generation_span = trace.span(
106
+ name="ai-response-generation",
107
+ metadata={"model": "Llama-3.2-3B-Instruct"},
108
+ input={"prompt": prompt}
109
+ )
110
+
111
  outputs = model.generate(input_ids, max_new_tokens=1200, do_sample=True, top_k=50, temperature=0.7)
112
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
113
+
114
+ # End model generation span
115
+ generation_span.end(
116
+ output={"response": response},
117
+ status_message="AI response generated"
118
+ )
119
 
120
+ # Update Langfuse context with usage details
121
  langfuse_context.update_current_observation(
122
  usage_details={
123
  "input_tokens": len(input_ids[0]),
 
125
  }
126
  )
127
 
128
+ # Append the response to the chat history
129
  chat_history.append((user_input, response))
130
+
131
+ # Update trace final output
132
+ trace.update(
133
+ metadata={"final_status": "completed"},
134
+ output={"summary": response}
135
+ )
136
+
137
+ # Return the response
138
  return response, chat_history
139
 
140
  # Gradio interface
 
143
  return response, updated_history
144
 
145
  with gr.Blocks() as demo:
146
+ gr.Markdown("# 🦙 Llama Instruct Chat with LangFuse & Faiss Integration")
147
  user_input = gr.Textbox(label="Your Message", lines=2)
148
  submit_btn = gr.Button("Send")
149
  chat_history = gr.State([])