File size: 4,123 Bytes
fdfb0c4
cca6750
 
1c5a6c6
 
 
 
 
 
b658652
97ccb9a
365d369
 
 
1c13312
 
 
 
365d369
 
934d9a2
17e8776
7118235
 
f3a9da9
cddf298
58bb7f3
e8f0d97
f3a9da9
d2826a9
 
 
 
 
 
f3a9da9
 
 
2a2c3ec
8f2a15c
d9fa708
 
f3a9da9
8f2a15c
2a2c3ec
 
 
8f2a15c
de95d73
8d7bc1b
 
 
 
 
 
 
 
ecfa0bf
8d7bc1b
 
8f2a15c
8d7bc1b
 
 
ecfa0bf
8d7bc1b
 
 
 
 
 
ecfa0bf
8d7bc1b
 
 
 
 
ecfa0bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7bc1b
 
 
4201209
8d7bc1b
 
 
4201209
8d7bc1b
 
 
8f2a15c
944514e
2a2c3ec
f3a9da9
 
2a2c3ec
 
 
de95d73
f3a9da9
365d369
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import streamlit as st

from PIL import Image
from tool_loader import ToolLoader
from app_user_desc import app_user_desc
from app_dev_desc import app_dev_desc
from logger import log_response
from logger import log_enabled
from app_chat import app_chat
import numpy as np
import re,sys,unicodedata

from app_agent_config import AgentConfig 

st.set_page_config(
    page_title="Custom Transformers can realy do anything...",
    page_icon="πŸ‘‹",
)
# Create an instance of AgentConfig
agent_config = AgentConfig()




st.title("Hugging Face Agent and Tools")

## LB https://huggingface.co/spaces/qiantong-xu/toolbench-leaderboard

st.markdown("Welcome to the Hugging Face Agent and Tools app! This app allows you to interact with various tools using the Hugging Face Inference API.  CustomTransformers can do anything \nπŸ€ͺπŸ€—πŸ˜„πŸ€—πŸ€ͺ.")

#######

import pandas as pd
from io import StringIO
with st.sidebar:

    st.header("Set Tools and Option. ")

    with st.expander("Configure the agent and activate tools"):

            agent_config.configure()

    with st.expander("Set Content and Context"):

            agent_config.context = st.text_area("Context")

            agent_config.image = st.camera_input("Take a picture")

            img_file_buffer = st.file_uploader('Upload a PNG image', type='png')
       
            if img_file_buffer is not None:
                image_raw = Image.open(img_file_buffer)
                #global image
                agent_config.image = np.array(image_raw)
                ######## 
                st.image(agent_config.image)
                
            uploaded_file = st.file_uploader("Choose a pdf", type='pdf')
            if uploaded_file is not None:
                # To read file as bytes:
                pdf_document = uploaded_file.getvalue() 
                agent_config.document = pdf_document
                st.write(pdf_document)
                
            uploaded_txt_file = st.file_uploader("Choose a txt", type='txt')
            if uploaded_txt_file is not None:
                # To read file as bytes:
                txt_document = uploaded_txt_file.getvalue()
                agent_config.document = txt_document
                st.write(txt_document)
                
            uploaded_csv_file = st.file_uploader("Choose a csv", type='csv')
            if uploaded_csv_file is not None:
                # To read file as bytes:
                csv_document = uploaded_csv_file.getvalue()
                agent_config.document = csv_document
                st.write(csv_document)
                            
            uploaded_csv_file = st.file_uploader("Choose audio", type='wav')
            if uploaded_csv_file is not None:
                # To read file as bytes:
                csv_document = uploaded_csv_file.getvalue()
                agent_config.document = csv_document
                st.write(csv_document)
                
            uploaded_csv_file = st.file_uploader("Choose video", type='avi')
            if uploaded_csv_file is not None:
                # To read file as bytes:
                csv_document = uploaded_csv_file.getvalue()
                agent_config.document = csv_document
                st.write(csv_document)
                        
                # To convert to a string based IO:
                #stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
                #st.write(stringio)
            
                # To read file as string:
                #string_data = stringio.read()
                #st.write(string_data)
            
                # Can be used wherever a "file-like" object is accepted:
                dataframe = pd.read_csv(uploaded_file)
                st.write(dataframe)

# Create a page with tabs
tabs = st.tabs(["Chat","User Description"])

with tabs[0]: 
    st.markdown("Start to chat. e.g. Generate an image of a boat. This will make the agent use the tool text2image to generate an image. Set content, context, Inference URL , tools and logging in the sidebar.")
 
with tabs[1]:
    app_user_desc()
       
app_chat(agent_config)