File size: 1,949 Bytes
fdfb0c4 cca6750 1c5a6c6 b658652 97ccb9a 52338d4 365d369 52338d4 1c13312 934d9a2 51f2e50 17e8776 f39e988 ba5096c 70de444 f39e988 52338d4 593ce6e 7118235 593ce6e d2826a9 f3a9da9 7aabd0d f3a9da9 2a2c3ec 8f2a15c d9fa708 f3a9da9 8f2a15c 3f91442 235f64d 944514e 7aabd0d f3a9da9 7aabd0d 235f64d 7aabd0d 235f64d 2a2c3ec 7aabd0d f3a9da9 365d369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import streamlit as st
from PIL import Image
from tool_loader import ToolLoader
from app_user_desc import app_user_desc
from app_dev_desc import app_dev_desc
from logger import log_response
from logger import log_enabled
from app_chat import app_chat
import numpy as np
import re,sys,unicodedata
import logging
from app_agent_config import AgentConfig
# Create an instance of AgentConfig ## holds all data and settings
agent_config = AgentConfig()
st.set_page_config(
page_title="Custom Transformers can realy do anything...",
page_icon="π",
)
#####
def on_close():
print("The modal was closed!")
def open_modal():
print("Todo")
# st.modal("User Guide", "app_user_desc()")
st.button("User Description", open_modal())
# Define a callback function that will be called when the button is clicked
#def open_modal():
# st.modal("User Guide", app_user_desc())
# Create a button that opens the modal
#######
import pandas as pd
from io import StringIO
with st.sidebar:
st.header("Set Tools and Option. ")
with st.expander("Configure the agent and activate tools"):
agent_config.configure()
with st.expander("Set Content and Context"):
agent_config.content_and_context()
# Create a page with tabs
#tabs = st.tabs(["Chat","User Description"])
#with tabs[0]:
st.title("Hugging Face Agent and Tools")
## LB https://huggingface.co/spaces/qiantong-xu/toolbench-leaderboard
st.markdown("Welcome to the Hugging Face Agent and Tools app! This app allows you to interact with various tools using the Hugging Face Inference API. CustomTransformers can do anything \nπ€ͺπ€ππ€π€ͺ.")
#st.markdown("Start to chat. e.g. Generate an image of a boat. This will make the agent use the tool text2image to generate an image. Set content, context, Inference URL , tools and logging in the sidebar.")
#with tabs[1]:
# app_user_desc()
app_chat(agent_config) |