File size: 3,482 Bytes
4dd9ebd
465b890
ce40f85
2fd0e0b
32c0f7f
 
6882039
 
 
62fc389
 
 
 
6882039
 
62fc389
56f2c57
eb6daca
1bdc7fe
62fc389
 
 
 
 
 
 
 
 
 
bfe8a00
b1d5623
32df215
b1d5623
32df215
b1d5623
c883735
 
 
 
 
32df215
c883735
 
 
 
 
 
 
32df215
c883735
b1d5623
c883735
 
 
 
32df215
c883735
 
 
 
 
 
32df215
c883735
 
 
 
 
 
32df215
c883735
b1d5623
c883735
 
 
 
32df215
c883735
 
 
 
 
 
 
 
 
 
 
 
 
b1d5623
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# app_agent_config.py
import streamlit as st
from tool_loader import ToolLoader
from tool_config import tool_names
from logger import log_enabled

from PIL import Image 
import numpy as np

class AgentConfig:
    def __init__(self):
        self.tool_checkboxes = []
        self.url_endpoint = ""
        self.image = []
        self.document = ""
        self.log_enabled = False
        self.context = ""
        self.tool_loader = ToolLoader(tool_names)

    def configure(self):
        st.markdown("Change the agent's configuration here.")
        self.url_endpoint = st.selectbox("Select Inference URL", [
            "https://api-inference.huggingface.co/models/bigcode/starcoder",
            "https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
            "https://api-inference.huggingface.co/models/gpt2"
        ])
        tool_loader = ToolLoader(tool_names)
        self.log_enabled = st.checkbox("Enable Logging")
        self.tool_checkboxes = [st.checkbox(f"{tool.name} --- {tool.description} ") for tool in tool_loader.tools]

    def content_and_context(self):
        self.context = st.text_area("Context")

        self.image = st.camera_input("Take a picture")

        img_file_buffer = st.file_uploader('Upload a PNG image', type='png')
   
        if img_file_buffer is not None:
            image_raw = Image.open(img_file_buffer)
            #global image
            self.image = np.array(image_raw)
            ######## 
            st.image(agent_config.image)
            
        uploaded_file = st.file_uploader("Choose a pdf", type='pdf')
        if uploaded_file is not None:
            # To read file as bytes:
            pdf_document = uploaded_file.getvalue() 
            self.document = pdf_document
            st.write(pdf_document)
            
        uploaded_txt_file = st.file_uploader("Choose a txt", type='txt')
        if uploaded_txt_file is not None:
            # To read file as bytes:
            txt_document = uploaded_txt_file.getvalue()
            self.document = txt_document
            st.write(txt_document)
            
        uploaded_csv_file = st.file_uploader("Choose a csv", type='csv')
        if uploaded_csv_file is not None:
            # To read file as bytes:
            csv_document = uploaded_csv_file.getvalue()
            self.document = csv_document
            st.write(csv_document)
                        
        uploaded_csv_file = st.file_uploader("Choose audio", type='wav')
        if uploaded_csv_file is not None:
            # To read file as bytes:
            csv_document = uploaded_csv_file.getvalue()
            self.document = csv_document
            st.write(csv_document)
            
        uploaded_csv_file = st.file_uploader("Choose video", type='avi')
        if uploaded_csv_file is not None:
            # To read file as bytes:
            csv_document = uploaded_csv_file.getvalue()
            self.document = csv_document
            st.write(csv_document)
                    
            # To convert to a string based IO:
            #stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
            #st.write(stringio)
        
            # To read file as string:
            #string_data = stringio.read()
            #st.write(string_data)
        
            # Can be used wherever a "file-like" object is accepted:
            dataframe = pd.read_csv(uploaded_file)
            st.write(dataframe)