File size: 4,097 Bytes
fdfb0c4 cca6750 1c5a6c6 b658652 365d369 934d9a2 17e8776 7118235 f3a9da9 7118235 f3a9da9 cddf298 58bb7f3 e8f0d97 f3a9da9 d2826a9 f3a9da9 2a2c3ec 8f2a15c d9fa708 f3a9da9 8f2a15c 2a2c3ec 8f2a15c de95d73 8d7bc1b ecfa0bf 8d7bc1b 8f2a15c 8d7bc1b ecfa0bf 8d7bc1b ecfa0bf 8d7bc1b ecfa0bf 8d7bc1b 4201209 8d7bc1b 4201209 8d7bc1b 8f2a15c 944514e 2a2c3ec f3a9da9 2a2c3ec de95d73 f3a9da9 365d369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import streamlit as st
from PIL import Image
from tool_loader import ToolLoader
from app_user_desc import app_user_desc
from app_dev_desc import app_dev_desc
from logger import log_response
from logger import log_enabled
from app_chat import app_chat
import numpy as np
from app_agent_config import AgentConfig
# Create an instance of AgentConfig
agent_config = AgentConfig()
st.set_page_config(
page_title="Custom Transformers can realy do anything...",
page_icon="π",
)
st.title("Hugging Face Agent and Tools")
## LB https://huggingface.co/spaces/qiantong-xu/toolbench-leaderboard
st.markdown("Welcome to the Hugging Face Agent and Tools app! This app allows you to interact with various tools using the Hugging Face Inference API. CustomTransformers can do anything \nπ€ͺπ€ππ€π€ͺ.")
#######
import pandas as pd
from io import StringIO
with st.sidebar:
st.header("Set Tools and Option. ")
with st.expander("Configure the agent and activate tools"):
agent_config.configure()
with st.expander("Set Content and Context"):
agent_config.context = st.text_area("Context")
agent_config.image = st.camera_input("Take a picture")
img_file_buffer = st.file_uploader('Upload a PNG image', type='png')
if img_file_buffer is not None:
image_raw = Image.open(img_file_buffer)
#global image
agent_config.image = np.array(image_raw)
########
st.image(agent_config.image)
uploaded_file = st.file_uploader("Choose a pdf", type='pdf')
if uploaded_file is not None:
# To read file as bytes:
pdf_document = uploaded_file.getvalue()
agent_config.document = pdf_document
st.write(pdf_document)
uploaded_txt_file = st.file_uploader("Choose a txt", type='txt')
if uploaded_txt_file is not None:
# To read file as bytes:
txt_document = uploaded_txt_file.getvalue()
agent_config.document = txt_document
st.write(txt_document)
uploaded_csv_file = st.file_uploader("Choose a csv", type='csv')
if uploaded_csv_file is not None:
# To read file as bytes:
csv_document = uploaded_csv_file.getvalue()
agent_config.document = csv_document
st.write(csv_document)
uploaded_csv_file = st.file_uploader("Choose audio", type='wav')
if uploaded_csv_file is not None:
# To read file as bytes:
csv_document = uploaded_csv_file.getvalue()
agent_config.document = csv_document
st.write(csv_document)
uploaded_csv_file = st.file_uploader("Choose video", type='avi')
if uploaded_csv_file is not None:
# To read file as bytes:
csv_document = uploaded_csv_file.getvalue()
agent_config.document = csv_document
st.write(csv_document)
# To convert to a string based IO:
#stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
#st.write(stringio)
# To read file as string:
#string_data = stringio.read()
#st.write(string_data)
# Can be used wherever a "file-like" object is accepted:
dataframe = pd.read_csv(uploaded_file)
st.write(dataframe)
# Create a page with tabs
tabs = st.tabs(["Chat","User Description"])
with tabs[0]:
st.markdown("Start to chat. e.g. Generate an image of a boat. This will make the agent use the tool text2image to generate an image. Set content, context, Inference URL , tools and logging in the sidebar.")
with tabs[1]:
app_user_desc()
app_chat(agent_config) |