Chris4K's picture
Update app.py
d511ad0 verified
raw
history blame
5.34 kB
import streamlit as st
import os
import base64
import io
from PIL import Image
from pydub import AudioSegment
import IPython
import soundfile as sf
import requests
import pandas as pd # If you're working with DataFrames
import matplotlib.figure # If you're using matplotlib figures
import numpy as np
from custom_agent import CustomHfAgent
from tool_loader import ToolLoader
from tool_config import tool_names
from app_description import show_app_description
from logger import log_response
# For Altair charts
import altair as alt
# For Bokeh charts
from bokeh.models import Plot
# For Plotly charts
import plotly.express as px
# For Pydeck charts
import pydeck as pdk
import logging
import streamlit as st
from transformers import load_tool, Agent
from tool_loader import ToolLoader
# Configure the logging settings for transformers
transformers_logger = logging.getLogger("transformers.file_utils")
transformers_logger.setLevel(logging.INFO) # Set the desired logging level
import time
import torch
def handle_submission(user_message, selected_tools, url_endpoint):
log_response("User input \n {}".format(user_message))
log_response("selected_tools \n {}".format(selected_tools))
log_response("url_endpoint \n {}".format(url_endpoint))
agent = CustomHfAgent(
url_endpoint=url_endpoint,
token=os.environ['HF_token'],
additional_tools=selected_tools,
input_params={"max_new_tokens": 192},
)
response = agent.run(user_message)
log_response("Agent Response\n {}".format(response))
return response
# Declare global variable
global log_enabled
log_enabled = False
# Create tool loader instance
tool_loader = ToolLoader(tool_names)
st.title("Hugging Face Agent and tools")
## LB https://huggingface.co/spaces/qiantong-xu/toolbench-leaderboard
st.markdown("Welcome to the Hugging Face Agent and Tools app! This app allows you to interact with various tools using the Hugging Face API.")
# Create a page with tabs
tabs = st.tabs(["Chat", "URL, Tools and logging", "User Description", "Developers"])
# Tab 1: Chat
with tabs[0]:
# Code for URL and Tools checkboxes
#chat_description()
# Examples for the user perspective
st.markdown("Stat to chat. e.g. Generate an image of a boat. This will make the agent use the tool text2image to generate an image.")
# Tab 2: URL and Tools
with tabs[1]:
#
app_config()
# Tab 3: User Description
with tabs[2]:
#
app_user_description()
# Tab 4: Developers
with tabs[3]:
app_dev_desc()
# Chat code (user input, agent responses, etc.)
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
with st.chat_message("assistant"):
st.markdown("Hello there! How can I assist you today?")
if user_message := st.chat_input("Enter message"):
st.chat_message("user").markdown(user_message)
st.session_state.messages.append({"role": "user", "content": user_message})
selected_tools = [tool_loader.tools[idx] for idx, checkbox in enumerate(tool_checkboxes) if checkbox]
# Handle submission with the selected inference URL
response = handle_submission(user_message, selected_tools, url_endpoint)
with st.chat_message("assistant"):
if response is None:
st.warning("The agent's response is None. Please try again. Generate an image of a flying horse.")
elif isinstance(response, Image.Image):
st.image(response)
elif isinstance(response, AudioSegment):
st.audio(response)
elif isinstance(response, int):
st.markdown(response)
elif isinstance(response, str):
if "emojified_text" in response:
st.markdown(f"{response['emojified_text']}")
else:
st.markdown(response)
elif isinstance(response, list):
for item in response:
st.markdown(item) # Assuming the list contains strings
elif isinstance(response, pd.DataFrame):
st.dataframe(response)
elif isinstance(response, pd.Series):
st.table(response.iloc[0:10])
elif isinstance(response, dict):
st.json(response)
elif isinstance(response, st.graphics_altair.AltairChart):
st.altair_chart(response)
elif isinstance(response, st.graphics_bokeh.BokehChart):
st.bokeh_chart(response)
elif isinstance(response, st.graphics_graphviz.GraphvizChart):
st.graphviz_chart(response)
elif isinstance(response, st.graphics_plotly.PlotlyChart):
st.plotly_chart(response)
elif isinstance(response, st.graphics_pydeck.PydeckChart):
st.pydeck_chart(response)
elif isinstance(response, matplotlib.figure.Figure):
st.pyplot(response)
elif isinstance(response, streamlit.graphics_vega_lite.VegaLiteChart):
st.vega_lite_chart(response)
else:
st.warning("Unrecognized response type. Please try again. e.g. Generate an image of a flying horse.")
st.session_state.messages.append({"role": "assistant", "content": response})