|
from langchain.vectorstores import FAISS |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import ConversationalRetrievalChain, ConversationChain |
|
from langchain.llms import HuggingFaceHub |
|
|
|
class ConversationChainSingleton: |
|
_instance = None |
|
|
|
def __new__(cls, *args, **kwargs): |
|
if not cls._instance: |
|
cls._instance = super(ConversationChainSingleton, cls).__new__(cls) |
|
|
|
cls._instance.conversation_chain = get_conversation_chain() |
|
return cls._instance |
|
|
|
def get_conversation_chain(self): |
|
return self.conversation_chain |
|
|
|
|
|
def get_conversation_chain( ): |
|
""" |
|
Create a conversational retrieval chain and a language model. |
|
|
|
""" |
|
|
|
llm = HuggingFaceHub( |
|
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
model_kwargs={"max_length": 1048, "temperature":0.2, "max_new_tokens":256, "top_p":0.95, "repetition_penalty":1.0}, |
|
) |
|
|
|
|
|
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) |
|
conversation_chain = ConversationChain( |
|
llm=llm, verbose=True, memory=memory |
|
) |
|
return conversation_chain |