Update app.py
Browse files
app.py
CHANGED
@@ -2,95 +2,40 @@ import streamlit as st
|
|
2 |
import os
|
3 |
import requests
|
4 |
|
5 |
-
|
6 |
-
#from transformers import BertModel, BertTokenizer
|
7 |
from transformers import HfAgent, load_tool
|
8 |
|
9 |
import torch
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Agent, LocalAgent
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
#
|
15 |
-
#tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
16 |
-
|
17 |
-
#agent = LocalAgent(model, tokenizer)
|
18 |
-
#agent.run("Draw me a picture of rivers and lakes.")
|
19 |
|
20 |
-
#print(agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!"))
|
21 |
|
22 |
# Load tools
|
23 |
controlnet_transformer = load_tool("huggingface-tools/text-to-image")
|
24 |
upscaler = load_tool("diffusers/latent-upscaler-tool")
|
25 |
|
26 |
-
tools = [controlnet_transformer, upscaler ]
|
27 |
-
|
28 |
-
|
29 |
-
############ HfAgent
|
30 |
-
from huggingface_hub import login
|
31 |
-
#Do this before HfAgent() and it should work
|
32 |
-
|
33 |
-
#from huggingface_hub import login
|
34 |
-
# load tools
|
35 |
-
from transformers.tools import HfAgent
|
36 |
-
from transformers.tools import Agent
|
37 |
-
#import textract
|
38 |
-
#from utils import logging
|
39 |
-
import time
|
40 |
-
|
41 |
-
from huggingface_hub import HfFolder, hf_hub_download, list_spaces
|
42 |
-
|
43 |
-
|
44 |
|
|
|
45 |
|
|
|
46 |
class CustomHfAgent(Agent):
|
47 |
-
"""
|
48 |
-
Agent that uses an inference endpoint to generate code.
|
49 |
-
|
50 |
-
Args:
|
51 |
-
url_endpoint (`str`):
|
52 |
-
The name of the url endpoint to use.
|
53 |
-
token (`str`, *optional*):
|
54 |
-
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
|
55 |
-
running `huggingface-cli login` (stored in `~/.huggingface`).
|
56 |
-
chat_prompt_template (`str`, *optional*):
|
57 |
-
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
|
58 |
-
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
|
59 |
-
`chat_prompt_template.txt` in this repo in this case.
|
60 |
-
run_prompt_template (`str`, *optional*):
|
61 |
-
Pass along your own prompt if you want to override the default template for the `run` method. Can be the
|
62 |
-
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
|
63 |
-
`run_prompt_template.txt` in this repo in this case.
|
64 |
-
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
|
65 |
-
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
|
66 |
-
one of the default tools, that default tool will be overridden.
|
67 |
-
|
68 |
-
Example:
|
69 |
-
|
70 |
-
```py
|
71 |
-
from transformers import HfAgent
|
72 |
-
|
73 |
-
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
|
74 |
-
agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
|
75 |
-
```
|
76 |
-
"""
|
77 |
-
|
78 |
def __init__(
|
79 |
self, url_endpoint, token=os.environ['HF_token'], chat_prompt_template=None, run_prompt_template=None, additional_tools=None
|
80 |
):
|
81 |
-
# super()._init_(self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None)
|
82 |
-
self.url_endpoint = url_endpoint
|
83 |
-
if token is None:
|
84 |
-
self.token = f"Bearer {HfFolder().get_token()}"
|
85 |
-
elif token.startswith("Bearer") or token.startswith("Basic"):
|
86 |
-
self.token = token
|
87 |
-
else:
|
88 |
-
self.token = f"Bearer {token}"
|
89 |
super().__init__(
|
90 |
chat_prompt_template=chat_prompt_template,
|
91 |
run_prompt_template=run_prompt_template,
|
92 |
additional_tools=additional_tools,
|
93 |
)
|
|
|
|
|
94 |
|
95 |
def generate_one(self, prompt, stop):
|
96 |
headers = {"Authorization": self.token}
|
@@ -98,7 +43,6 @@ class CustomHfAgent(Agent):
|
|
98 |
"inputs": prompt,
|
99 |
"parameters": {"max_new_tokens": 192, "return_full_text": False, "stop": stop},
|
100 |
}
|
101 |
-
print(inputs)
|
102 |
response = requests.post(self.url_endpoint, json=inputs, headers=headers)
|
103 |
if response.status_code == 429:
|
104 |
print("Getting rate-limited, waiting a tiny bit before trying again.")
|
@@ -114,52 +58,6 @@ class CustomHfAgent(Agent):
|
|
114 |
return result[: -len(stop_seq)]
|
115 |
return result
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
# create agent
|
121 |
-
#agent = HfAgent(API_URL)
|
122 |
-
|
123 |
-
#print(agent)
|
124 |
-
# instruct agent
|
125 |
-
|
126 |
-
|
127 |
-
# Use CustomHfAgent in your code
|
128 |
-
agent = CustomHfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
|
129 |
-
print("-----")
|
130 |
-
print(agent.token)
|
131 |
-
|
132 |
-
print("-----")
|
133 |
-
agent.token = os.environ['HF_token']
|
134 |
-
print("-----")
|
135 |
-
print(agent.token)
|
136 |
-
|
137 |
-
print("-----")
|
138 |
-
|
139 |
-
#agent.token = "Bearer xxx"
|
140 |
-
#print(agent.token)
|
141 |
-
#agent.run("Answer the following question", question ="what is the capitol of the usa?", context="The capitol of the usa is London")
|
142 |
-
agent.chat("Draw me a picture of rivers and lakes")
|
143 |
-
|
144 |
-
#agent.chat("Transform the picture so that there is a rock in there")
|
145 |
-
|
146 |
-
#result = agent.generate_one("What is the capitol of the usa.", stop=["your_stop_sequence"])
|
147 |
-
#print(result)
|
148 |
-
|
149 |
-
#agent.run("Show me an image of a horse")
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
#####
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
# Define the model and tokenizer
|
160 |
-
#model = BertModel.from_pretrained('bert-base-uncased')
|
161 |
-
#tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
162 |
-
|
163 |
# Create the Streamlit app
|
164 |
st.title("Hugging Face Agent")
|
165 |
|
@@ -170,34 +68,41 @@ message_input = st.text_input("Enter your message:", "")
|
|
170 |
tool_checkboxes = [st.checkbox(f"Use {tool}") for tool in tools]
|
171 |
|
172 |
# Submit button
|
173 |
-
|
174 |
-
|
175 |
|
176 |
# Define the callback function to handle the form submission
|
177 |
def handle_submission():
|
178 |
# Get the user's message and the selected tools
|
179 |
-
message = message_input
|
180 |
-
selected_tools = [tool for tool, checkbox in
|
181 |
-
|
182 |
-
# Initialize the agent with the selected tools
|
183 |
-
#agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=tools)
|
184 |
-
#agent = HfAgent("https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", additional_tools=tools)
|
185 |
-
#agent = HfAgent("https://api-inference.huggingface.co/models/THUDM/agentlm-7b", additional_tools=tools)
|
186 |
-
|
187 |
|
188 |
-
|
189 |
-
|
190 |
|
191 |
-
#
|
192 |
-
|
193 |
-
# outputs = agent(inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
194 |
|
195 |
# Display the agent's response
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import requests
|
4 |
|
5 |
+
# From transformers import BertModel, BertTokenizer
|
|
|
6 |
from transformers import HfAgent, load_tool
|
7 |
|
8 |
import torch
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Agent, LocalAgent
|
10 |
|
11 |
+
# checkpoint = "THUDM/agentlm-7b"
|
12 |
+
# model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
|
13 |
+
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
14 |
|
15 |
+
# agent = LocalAgent(model, tokenizer)
|
16 |
+
# agent.run("Draw me a picture of rivers and lakes.")
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# print(agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!"))
|
19 |
|
20 |
# Load tools
|
21 |
controlnet_transformer = load_tool("huggingface-tools/text-to-image")
|
22 |
upscaler = load_tool("diffusers/latent-upscaler-tool")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
tools = [controlnet_transformer, upscaler]
|
26 |
|
27 |
+
# Define the custom HfAgent class
|
28 |
class CustomHfAgent(Agent):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def __init__(
|
30 |
self, url_endpoint, token=os.environ['HF_token'], chat_prompt_template=None, run_prompt_template=None, additional_tools=None
|
31 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
super().__init__(
|
33 |
chat_prompt_template=chat_prompt_template,
|
34 |
run_prompt_template=run_prompt_template,
|
35 |
additional_tools=additional_tools,
|
36 |
)
|
37 |
+
self.url_endpoint = url_endpoint
|
38 |
+
self.token = token
|
39 |
|
40 |
def generate_one(self, prompt, stop):
|
41 |
headers = {"Authorization": self.token}
|
|
|
43 |
"inputs": prompt,
|
44 |
"parameters": {"max_new_tokens": 192, "return_full_text": False, "stop": stop},
|
45 |
}
|
|
|
46 |
response = requests.post(self.url_endpoint, json=inputs, headers=headers)
|
47 |
if response.status_code == 429:
|
48 |
print("Getting rate-limited, waiting a tiny bit before trying again.")
|
|
|
58 |
return result[: -len(stop_seq)]
|
59 |
return result
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
# Create the Streamlit app
|
62 |
st.title("Hugging Face Agent")
|
63 |
|
|
|
68 |
tool_checkboxes = [st.checkbox(f"Use {tool}") for tool in tools]
|
69 |
|
70 |
# Submit button
|
71 |
+
submit_button = st.button("Submit")
|
|
|
72 |
|
73 |
# Define the callback function to handle the form submission
|
74 |
def handle_submission():
|
75 |
# Get the user's message and the selected tools
|
76 |
+
message = message_input.value
|
77 |
+
selected_tools = [tool for tool, checkbox in tool_checkboxes]
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# Initialize the agent
|
80 |
+
agent = CustomHfAgent(url_endpoint="https://api-inference.huggingface.co/models/bigcode/starcoder", token=os.environ['HF_token'])
|
81 |
|
82 |
+
# Run the agent with the user's message and selected tools
|
83 |
+
response = agent.run(message, tools=selected_tools)
|
|
|
84 |
|
85 |
# Display the agent's response
|
86 |
+
# Display the agent's response
|
87 |
+
if response.startswith("Image:"):
|
88 |
+
# Display the image response
|
89 |
+
image_data = base64.b64decode(response.split(",")[1])
|
90 |
+
img = Image.open(io.BytesIO(image_data))
|
91 |
+
st.image(img)
|
92 |
+
else:
|
93 |
+
# Display the text response
|
94 |
+
st.write(response)
|
95 |
+
|
96 |
+
# Add a button to trigger the agent to respond again
|
97 |
+
st.button("Ask Again")
|
98 |
+
|
99 |
+
# Define a callback function to handle the button click
|
100 |
+
def ask_again():
|
101 |
+
# Reset the message input field
|
102 |
+
message_input.value = ""
|
103 |
+
|
104 |
+
# Run the agent again with an empty message
|
105 |
+
agent.run("")
|
106 |
+
|
107 |
+
# Add the callback function to the button
|
108 |
+
st.button("Ask Again").do(ask_again)
|