Chris4K commited on
Commit
7755f96
·
verified ·
1 Parent(s): a8753a6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +127 -6
app.py CHANGED
@@ -6,14 +6,14 @@ import torch
6
  from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent
7
 
8
 
9
- checkpoint = "THUDM/agentlm-7b"
10
- model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
11
- tokenizer = AutoTokenizer.from_pretrained(checkpoint)
12
 
13
- agent = LocalAgent(model, tokenizer)
14
- agent.run("Draw me a picture of rivers and lakes.")
15
 
16
- print(agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!"))
17
 
18
  # Load tools
19
  controlnet_transformer = load_tool("huggingface-tools/text-to-image")
@@ -21,6 +21,127 @@ upscaler = load_tool("diffusers/latent-upscaler-tool")
21
 
22
  tools = [controlnet_transformer, upscaler ]
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  # Define the model and tokenizer
25
  #model = BertModel.from_pretrained('bert-base-uncased')
26
  #tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
 
6
  from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent
7
 
8
 
9
+ #checkpoint = "THUDM/agentlm-7b"
10
+ #model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
11
+ #tokenizer = AutoTokenizer.from_pretrained(checkpoint)
12
 
13
+ #agent = LocalAgent(model, tokenizer)
14
+ #agent.run("Draw me a picture of rivers and lakes.")
15
 
16
+ #print(agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!"))
17
 
18
  # Load tools
19
  controlnet_transformer = load_tool("huggingface-tools/text-to-image")
 
21
 
22
  tools = [controlnet_transformer, upscaler ]
23
 
24
+
25
+ ############ HfAgent
26
+ from huggingface_hub import login
27
+ #Do this before HfAgent() and it should work
28
+
29
+ #from huggingface_hub import login
30
+ # load tools
31
+ from transformers.tools import HfAgent
32
+ from transformers.tools import Agent
33
+ #import textract
34
+ #from utils import logging
35
+ import time
36
+
37
+ from huggingface_hub import HfFolder, hf_hub_download, list_spaces
38
+
39
+
40
+
41
+
42
+ class CustomHfAgent(Agent):
43
+ """
44
+ Agent that uses an inference endpoint to generate code.
45
+
46
+ Args:
47
+ url_endpoint (`str`):
48
+ The name of the url endpoint to use.
49
+ token (`str`, *optional*):
50
+ The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
51
+ running `huggingface-cli login` (stored in `~/.huggingface`).
52
+ chat_prompt_template (`str`, *optional*):
53
+ Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
54
+ actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
55
+ `chat_prompt_template.txt` in this repo in this case.
56
+ run_prompt_template (`str`, *optional*):
57
+ Pass along your own prompt if you want to override the default template for the `run` method. Can be the
58
+ actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
59
+ `run_prompt_template.txt` in this repo in this case.
60
+ additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
61
+ Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
62
+ one of the default tools, that default tool will be overridden.
63
+
64
+ Example:
65
+
66
+ ```py
67
+ from transformers import HfAgent
68
+
69
+ agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
70
+ agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
71
+ ```
72
+ """
73
+
74
+ def __init__(
75
+ self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None
76
+ ):
77
+ # super()._init_(self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None)
78
+ self.url_endpoint = url_endpoint
79
+ if token is None:
80
+ self.token = f"Bearer {HfFolder().get_token()}"
81
+ elif token.startswith("Bearer") or token.startswith("Basic"):
82
+ self.token = token
83
+ else:
84
+ self.token = f"Bearer {token}"
85
+ super().__init__(
86
+ chat_prompt_template=chat_prompt_template,
87
+ run_prompt_template=run_prompt_template,
88
+ additional_tools=additional_tools,
89
+ )
90
+
91
+ def generate_one(self, prompt, stop):
92
+ headers = {"Authorization": self.token}
93
+ inputs = {
94
+ "inputs": prompt,
95
+ "parameters": {"max_new_tokens": 192, "return_full_text": False, "stop": stop},
96
+ }
97
+ print(inputs)
98
+ response = requests.post(self.url_endpoint, json=inputs, headers=headers)
99
+ if response.status_code == 429:
100
+ print("Getting rate-limited, waiting a tiny bit before trying again.")
101
+ time.sleep(1)
102
+ return self._generate_one(prompt)
103
+ elif response.status_code != 200:
104
+ raise ValueError(f"Errors {inputs} {response.status_code}: {response.json()}")
105
+
106
+ result = response.json()[0]["generated_text"]
107
+ # Inference API returns the stop sequence
108
+ for stop_seq in stop:
109
+ if result.endswith(stop_seq):
110
+ return result[: -len(stop_seq)]
111
+ return result
112
+
113
+
114
+
115
+
116
+ # create agent
117
+ #agent = HfAgent(API_URL)
118
+
119
+ #print(agent)
120
+ # instruct agent
121
+
122
+
123
+ # Use CustomHfAgent in your code
124
+ agent = CustomHfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
125
+ #agent.token = "Bearer xxx"
126
+ #print(agent.token)
127
+ #agent.run("Answer the following question", question ="what is the capitol of the usa?", context="The capitol of the usa is London")
128
+ #agent.chat("Draw me a picture of rivers and lakes")
129
+
130
+ #agent.chat("Transform the picture so that there is a rock in there")
131
+
132
+ #result = agent.generate_one("What is the capitol of the usa.", stop=["your_stop_sequence"])
133
+ #print(result)
134
+
135
+ #agent.run("Show me an image of a horse")
136
+
137
+
138
+
139
+
140
+ #####
141
+
142
+
143
+
144
+
145
  # Define the model and tokenizer
146
  #model = BertModel.from_pretrained('bert-base-uncased')
147
  #tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')