Update app.py
Browse files
app.py
CHANGED
@@ -6,14 +6,14 @@ import torch
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent
|
7 |
|
8 |
|
9 |
-
checkpoint = "THUDM/agentlm-7b"
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
12 |
|
13 |
-
agent = LocalAgent(model, tokenizer)
|
14 |
-
agent.run("Draw me a picture of rivers and lakes.")
|
15 |
|
16 |
-
print(agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!"))
|
17 |
|
18 |
# Load tools
|
19 |
controlnet_transformer = load_tool("huggingface-tools/text-to-image")
|
@@ -21,6 +21,127 @@ upscaler = load_tool("diffusers/latent-upscaler-tool")
|
|
21 |
|
22 |
tools = [controlnet_transformer, upscaler ]
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Define the model and tokenizer
|
25 |
#model = BertModel.from_pretrained('bert-base-uncased')
|
26 |
#tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent
|
7 |
|
8 |
|
9 |
+
#checkpoint = "THUDM/agentlm-7b"
|
10 |
+
#model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
|
11 |
+
#tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
12 |
|
13 |
+
#agent = LocalAgent(model, tokenizer)
|
14 |
+
#agent.run("Draw me a picture of rivers and lakes.")
|
15 |
|
16 |
+
#print(agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!"))
|
17 |
|
18 |
# Load tools
|
19 |
controlnet_transformer = load_tool("huggingface-tools/text-to-image")
|
|
|
21 |
|
22 |
tools = [controlnet_transformer, upscaler ]
|
23 |
|
24 |
+
|
25 |
+
############ HfAgent
|
26 |
+
from huggingface_hub import login
|
27 |
+
#Do this before HfAgent() and it should work
|
28 |
+
|
29 |
+
#from huggingface_hub import login
|
30 |
+
# load tools
|
31 |
+
from transformers.tools import HfAgent
|
32 |
+
from transformers.tools import Agent
|
33 |
+
#import textract
|
34 |
+
#from utils import logging
|
35 |
+
import time
|
36 |
+
|
37 |
+
from huggingface_hub import HfFolder, hf_hub_download, list_spaces
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
class CustomHfAgent(Agent):
|
43 |
+
"""
|
44 |
+
Agent that uses an inference endpoint to generate code.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
url_endpoint (`str`):
|
48 |
+
The name of the url endpoint to use.
|
49 |
+
token (`str`, *optional*):
|
50 |
+
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
|
51 |
+
running `huggingface-cli login` (stored in `~/.huggingface`).
|
52 |
+
chat_prompt_template (`str`, *optional*):
|
53 |
+
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
|
54 |
+
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
|
55 |
+
`chat_prompt_template.txt` in this repo in this case.
|
56 |
+
run_prompt_template (`str`, *optional*):
|
57 |
+
Pass along your own prompt if you want to override the default template for the `run` method. Can be the
|
58 |
+
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
|
59 |
+
`run_prompt_template.txt` in this repo in this case.
|
60 |
+
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
|
61 |
+
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
|
62 |
+
one of the default tools, that default tool will be overridden.
|
63 |
+
|
64 |
+
Example:
|
65 |
+
|
66 |
+
```py
|
67 |
+
from transformers import HfAgent
|
68 |
+
|
69 |
+
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
|
70 |
+
agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
|
71 |
+
```
|
72 |
+
"""
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None
|
76 |
+
):
|
77 |
+
# super()._init_(self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None)
|
78 |
+
self.url_endpoint = url_endpoint
|
79 |
+
if token is None:
|
80 |
+
self.token = f"Bearer {HfFolder().get_token()}"
|
81 |
+
elif token.startswith("Bearer") or token.startswith("Basic"):
|
82 |
+
self.token = token
|
83 |
+
else:
|
84 |
+
self.token = f"Bearer {token}"
|
85 |
+
super().__init__(
|
86 |
+
chat_prompt_template=chat_prompt_template,
|
87 |
+
run_prompt_template=run_prompt_template,
|
88 |
+
additional_tools=additional_tools,
|
89 |
+
)
|
90 |
+
|
91 |
+
def generate_one(self, prompt, stop):
|
92 |
+
headers = {"Authorization": self.token}
|
93 |
+
inputs = {
|
94 |
+
"inputs": prompt,
|
95 |
+
"parameters": {"max_new_tokens": 192, "return_full_text": False, "stop": stop},
|
96 |
+
}
|
97 |
+
print(inputs)
|
98 |
+
response = requests.post(self.url_endpoint, json=inputs, headers=headers)
|
99 |
+
if response.status_code == 429:
|
100 |
+
print("Getting rate-limited, waiting a tiny bit before trying again.")
|
101 |
+
time.sleep(1)
|
102 |
+
return self._generate_one(prompt)
|
103 |
+
elif response.status_code != 200:
|
104 |
+
raise ValueError(f"Errors {inputs} {response.status_code}: {response.json()}")
|
105 |
+
|
106 |
+
result = response.json()[0]["generated_text"]
|
107 |
+
# Inference API returns the stop sequence
|
108 |
+
for stop_seq in stop:
|
109 |
+
if result.endswith(stop_seq):
|
110 |
+
return result[: -len(stop_seq)]
|
111 |
+
return result
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
# create agent
|
117 |
+
#agent = HfAgent(API_URL)
|
118 |
+
|
119 |
+
#print(agent)
|
120 |
+
# instruct agent
|
121 |
+
|
122 |
+
|
123 |
+
# Use CustomHfAgent in your code
|
124 |
+
agent = CustomHfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
|
125 |
+
#agent.token = "Bearer xxx"
|
126 |
+
#print(agent.token)
|
127 |
+
#agent.run("Answer the following question", question ="what is the capitol of the usa?", context="The capitol of the usa is London")
|
128 |
+
#agent.chat("Draw me a picture of rivers and lakes")
|
129 |
+
|
130 |
+
#agent.chat("Transform the picture so that there is a rock in there")
|
131 |
+
|
132 |
+
#result = agent.generate_one("What is the capitol of the usa.", stop=["your_stop_sequence"])
|
133 |
+
#print(result)
|
134 |
+
|
135 |
+
#agent.run("Show me an image of a horse")
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
#####
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
# Define the model and tokenizer
|
146 |
#model = BertModel.from_pretrained('bert-base-uncased')
|
147 |
#tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|