static
Browse files- model/conversation_chain_singleton.py +59 -17
- model/custom_agent.py +50 -11
model/conversation_chain_singleton.py
CHANGED
@@ -1,35 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from langchain.memory import ConversationBufferMemory
|
2 |
from langchain.chains import ConversationChain
|
3 |
from langchain.llms import HuggingFaceHub
|
4 |
|
5 |
class ConversationChainSingleton:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
_instance = None
|
7 |
|
8 |
def __new__(cls, *args, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
if not cls._instance:
|
10 |
cls._instance = super(ConversationChainSingleton, cls).__new__(cls)
|
11 |
# Initialize your conversation chain here
|
12 |
-
cls._instance.conversation_chain = get_conversation_chain()
|
13 |
return cls._instance
|
14 |
|
15 |
def get_conversation_chain(self):
|
16 |
-
return self.conversation_chain
|
17 |
-
|
18 |
-
|
19 |
-
def get_conversation_chain( ):
|
20 |
"""
|
21 |
-
|
22 |
|
|
|
|
|
23 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
32 |
-
conversation_chain = ConversationChain(
|
33 |
-
llm=llm, verbose=True, memory=memory
|
34 |
-
)
|
35 |
-
return conversation_chain
|
|
|
1 |
+
"""
|
2 |
+
Module: conversation_chain_singleton
|
3 |
+
|
4 |
+
This module provides a singleton class, ConversationChainSingleton, for managing a conversation chain instance.
|
5 |
+
|
6 |
+
Dependencies:
|
7 |
+
- langchain.memory: Module providing memory functionalities for conversation chains.
|
8 |
+
- langchain.chains: Module providing conversation chain functionalities.
|
9 |
+
- langchain.llms: Module providing language model functionalities, particularly from HuggingFaceHub.
|
10 |
+
|
11 |
+
Classes:
|
12 |
+
- ConversationChainSingleton: A singleton class for managing a conversation chain instance.
|
13 |
+
"""
|
14 |
+
|
15 |
from langchain.memory import ConversationBufferMemory
|
16 |
from langchain.chains import ConversationChain
|
17 |
from langchain.llms import HuggingFaceHub
|
18 |
|
19 |
class ConversationChainSingleton:
|
20 |
+
"""
|
21 |
+
A singleton class for managing a conversation chain instance.
|
22 |
+
|
23 |
+
Attributes:
|
24 |
+
- _instance: Private attribute holding the singleton instance.
|
25 |
+
- conversation_chain: The conversation chain instance.
|
26 |
+
|
27 |
+
Methods:
|
28 |
+
- __new__(cls, *args, **kwargs): Creates a new instance of the ConversationChainSingleton class.
|
29 |
+
- get_conversation_chain(self): Returns the conversation chain instance.
|
30 |
+
|
31 |
+
Static Methods:
|
32 |
+
- get_conversation_chain(): Creates and returns a conversational retrieval chain and a language model.
|
33 |
+
"""
|
34 |
+
|
35 |
_instance = None
|
36 |
|
37 |
def __new__(cls, *args, **kwargs):
|
38 |
+
"""
|
39 |
+
Create a new instance of the ConversationChainSingleton class if it doesn't exist.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
- ConversationChainSingleton: The singleton instance.
|
43 |
+
"""
|
44 |
if not cls._instance:
|
45 |
cls._instance = super(ConversationChainSingleton, cls).__new__(cls)
|
46 |
# Initialize your conversation chain here
|
47 |
+
cls._instance.conversation_chain = cls.get_conversation_chain()
|
48 |
return cls._instance
|
49 |
|
50 |
def get_conversation_chain(self):
|
|
|
|
|
|
|
|
|
51 |
"""
|
52 |
+
Get the conversation chain instance.
|
53 |
|
54 |
+
Returns:
|
55 |
+
- ConversationChain: The conversation chain instance.
|
56 |
"""
|
57 |
+
return self.conversation_chain
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def get_conversation_chain():
|
61 |
+
"""
|
62 |
+
Create a conversational retrieval chain and a language model.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
- ConversationChain: The conversation chain instance.
|
66 |
+
"""
|
67 |
+
llm = HuggingFaceHub(
|
68 |
+
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
69 |
+
model_kwargs={"max_length": 1048, "temperature": 0.2, "max_new_tokens": 256, "top_p": 0.95, "repetition_penalty": 1.0},
|
70 |
+
)
|
71 |
+
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
72 |
|
73 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
74 |
+
conversation_chain = ConversationChain(
|
75 |
+
llm=llm, verbose=True, memory=memory
|
76 |
+
)
|
77 |
+
return conversation_chain
|
|
|
|
|
|
|
|
|
|
|
|
model/custom_agent.py
CHANGED
@@ -1,17 +1,41 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import time
|
|
|
7 |
from transformers import Agent
|
8 |
from utils.logger import log_response
|
9 |
|
10 |
-
import time
|
11 |
-
import torch
|
12 |
-
|
13 |
class CustomHfAgent(Agent):
|
|
|
|
|
14 |
def __init__(self, url_endpoint, token, chat_prompt_template=None, run_prompt_template=None, additional_tools=None, input_params=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
super().__init__(
|
16 |
chat_prompt_template=chat_prompt_template,
|
17 |
run_prompt_template=run_prompt_template,
|
@@ -22,6 +46,16 @@ class CustomHfAgent(Agent):
|
|
22 |
self.input_params = input_params
|
23 |
|
24 |
def generate_one(self, prompt, stop):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
headers = {"Authorization": self.token}
|
26 |
max_new_tokens = self.input_params.get("max_new_tokens", 192)
|
27 |
parameters = {"max_new_tokens": max_new_tokens, "return_full_text": False, "stop": stop, "padding": True, "truncation": True}
|
@@ -29,12 +63,17 @@ class CustomHfAgent(Agent):
|
|
29 |
"inputs": prompt,
|
30 |
"parameters": parameters,
|
31 |
}
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
if response.status_code == 429:
|
35 |
log_response("Getting rate-limited, waiting a tiny bit before trying again.")
|
36 |
time.sleep(1)
|
37 |
-
return self.
|
38 |
elif response.status_code != 200:
|
39 |
raise ValueError(f"Errors {inputs} {response.status_code}: {response.json()}")
|
40 |
log_response(response)
|
|
|
1 |
+
"""
|
2 |
+
Module: custom_agent
|
3 |
+
|
4 |
+
This module provides a custom class, CustomHfAgent, for interacting with the Hugging Face model API.
|
5 |
+
|
6 |
+
Dependencies:
|
7 |
+
- time: Standard Python time module for time-related operations.
|
8 |
+
- requests: HTTP library for making requests.
|
9 |
+
- transformers: Hugging Face's transformers library for NLP tasks.
|
10 |
+
- utils.logger: Custom logger module for logging responses.
|
11 |
+
|
12 |
+
Classes:
|
13 |
+
- CustomHfAgent: A custom class for interacting with the Hugging Face model API.
|
14 |
+
"""
|
15 |
+
|
16 |
import time
|
17 |
+
import requests
|
18 |
from transformers import Agent
|
19 |
from utils.logger import log_response
|
20 |
|
|
|
|
|
|
|
21 |
class CustomHfAgent(Agent):
|
22 |
+
"""A custom class for interacting with the Hugging Face model API."""
|
23 |
+
|
24 |
def __init__(self, url_endpoint, token, chat_prompt_template=None, run_prompt_template=None, additional_tools=None, input_params=None):
|
25 |
+
"""
|
26 |
+
Initialize the CustomHfAgent.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
- url_endpoint (str): The URL endpoint for the Hugging Face model API.
|
30 |
+
- token (str): The authentication token required to access the API.
|
31 |
+
- chat_prompt_template (str): Template for chat prompts.
|
32 |
+
- run_prompt_template (str): Template for run prompts.
|
33 |
+
- additional_tools (list): Additional tools for the agent.
|
34 |
+
- input_params (dict): Additional parameters for input.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
- None
|
38 |
+
"""
|
39 |
super().__init__(
|
40 |
chat_prompt_template=chat_prompt_template,
|
41 |
run_prompt_template=run_prompt_template,
|
|
|
46 |
self.input_params = input_params
|
47 |
|
48 |
def generate_one(self, prompt, stop):
|
49 |
+
"""
|
50 |
+
Generate one response from the Hugging Face model.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
- prompt (str): The prompt to generate a response for.
|
54 |
+
- stop (list): A list of strings indicating where to stop generating text.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
- str: The generated response.
|
58 |
+
"""
|
59 |
headers = {"Authorization": self.token}
|
60 |
max_new_tokens = self.input_params.get("max_new_tokens", 192)
|
61 |
parameters = {"max_new_tokens": max_new_tokens, "return_full_text": False, "stop": stop, "padding": True, "truncation": True}
|
|
|
63 |
"inputs": prompt,
|
64 |
"parameters": parameters,
|
65 |
}
|
66 |
+
print(inputs)
|
67 |
+
try:
|
68 |
+
response = requests.post(self.url_endpoint, json=inputs, headers=headers, timeout=300)
|
69 |
+
except requests.Timeout:
|
70 |
+
pass
|
71 |
+
except requests.ConnectionError:
|
72 |
+
pass
|
73 |
if response.status_code == 429:
|
74 |
log_response("Getting rate-limited, waiting a tiny bit before trying again.")
|
75 |
time.sleep(1)
|
76 |
+
return self.generate_one(prompt, stop)
|
77 |
elif response.status_code != 200:
|
78 |
raise ValueError(f"Errors {inputs} {response.status_code}: {response.json()}")
|
79 |
log_response(response)
|