import os from app_agent_config import AgentConfig from utils.logger import log_response from model.custom_agent import CustomHfAgent from model.conversation_chain_singleton import ConversationChainSingleton class Controller: def __init__(self): self.agent_config = AgentConfig() image = [] def handle_submission(user_message, selected_tools, url_endpoint, document, image, context): log_response("User input \n {}".format(user_message)) log_response("selected_tools \n {}".format(selected_tools)) log_response("url_endpoint \n {}".format(url_endpoint)) log_response("document \n {}".format(document)) log_response("image \n {}".format(image)) log_response("context \n {}".format(context)) agent = CustomHfAgent( url_endpoint=url_endpoint, token=os.environ['HF_token'], additional_tools=selected_tools, input_params={"max_new_tokens": 192}, ) response = agent.chat(user_message,document=document,image=image, context = context) log_response("Agent Response\n {}".format(response)) return response def cut_text_after_keyword(text, keyword): index = text.find(keyword) if index != -1: return text[:index].strip() return text def handle_submission_chat(user_message, response): # os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HF_token'] agent_chat_bot = ConversationChainSingleton().get_conversation_chain() if response is not None: text = agent_chat_bot.predict(input=user_message + response) else: text = agent_chat_bot.predict(input=user_message) result = cut_text_after_keyword(text, "Human:") print(result) return result