File size: 1,886 Bytes
abaf9f1
7a3dd67
abaf9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c93520
fff699d
 
b5e231e
5a1eeff
fff699d
 
1914116
fff699d
 
 
 
 
 
 
abaf9f1
 
 
fff699d
 
abaf9f1
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# services/model_service.py
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaConfig
from sentence_transformers import SentenceTransformer
import torch
from functools import lru_cache
from config.config import settings
import logging

logger = logging.getLogger(__name__)

class ModelService:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
            cls._instance._initialized = False
        return cls._instance

    def __init__(self):
        if not self._initialized:
            self._initialized = True
            self._load_models()

    @lru_cache(maxsize=1)
    def _load_models(self):
        try:
            self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME )

                  # Modify the model configuration to use a valid rope_scaling format
            config = LlamaConfig.from_pretrained(settings.model_name)
            if hasattr(config, "rope_scaling"):
                config.rope_scaling = {
                    "type": "linear",
                    "factor": 32.0
                }
            
            # Load model with updated configuration
            #self.model = AutoModelForCausalLM.from_pretrained(model_name, config=config).to(device)

        
            
            self.model = AutoModelForCausalLM.from_pretrained(
                settings.MODEL_NAME,
                torch_dtype=torch.float16 if settings.DEVICE == "cuda" else torch.float32,
                device_map="auto" if settings.DEVICE == "cuda" else None,
                config=config
            )
            self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL)
        except Exception as e:
            logger.error(f"Error loading models: {e}")
            raise

    def get_models(self):
        return self.tokenizer, self.model, self.embedder