# services/model_service.py | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from sentence_transformers import SentenceTransformer | |
import torch | |
from functools import lru_cache | |
from config.config import settings | |
import logging | |
logger = logging.getLogger(__name__) | |
class ModelService: | |
_instance = None | |
def __new__(cls): | |
if cls._instance is None: | |
cls._instance = super().__new__(cls) | |
cls._instance._initialized = False | |
return cls._instance | |
def __init__(self): | |
if not self._initialized: | |
self._initialized = True | |
self._load_models() | |
def _load_models(self): | |
try: | |
self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
settings.MODEL_NAME, | |
torch_dtype=torch.float16 if settings.DEVICE == "cuda" else torch.float32, | |
device_map="auto" if settings.DEVICE == "cuda" else None | |
) | |
self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL) | |
except Exception as e: | |
logger.error(f"Error loading models: {e}") | |
raise | |
def get_models(self): | |
return self.tokenizer, self.model, self.embedder | |