|
|
|
|
|
from typing import List, Dict, Any, Optional, Tuple |
|
from datetime import datetime |
|
import logging |
|
from config.config import settings |
|
import asyncio |
|
from io import StringIO |
|
import pandas as pd |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
class ConversationManager: |
|
"""Manages conversation history and context""" |
|
def __init__(self): |
|
self.conversations: Dict[str, List[Dict[str, Any]]] = {} |
|
self.max_history = 1 |
|
|
|
def add_interaction( |
|
self, |
|
session_id: str, |
|
user_input: str, |
|
response: str, |
|
context: Optional[Dict[str, Any]] = None |
|
) -> None: |
|
if session_id not in self.conversations: |
|
self.conversations[session_id] = [] |
|
|
|
self.conversations[session_id].append({ |
|
'timestamp': datetime.now().isoformat(), |
|
'user_input': user_input, |
|
'response': response, |
|
'context': context |
|
}) |
|
|
|
if len(self.conversations[session_id]) > self.max_history: |
|
self.conversations[session_id] = self.conversations[session_id][-self.max_history:] |
|
|
|
def get_history(self, session_id: str) -> List[Dict[str, Any]]: |
|
return self.conversations.get(session_id, []) |
|
|
|
def clear_history(self, session_id: str) -> None: |
|
if session_id in self.conversations: |
|
del self.conversations[session_id] |
|
|
|
class ChatService: |
|
def __init__( |
|
self, |
|
model_service, |
|
data_service, |
|
pdf_service, |
|
faq_service |
|
): |
|
self.model = model_service.model |
|
self.tokenizer = model_service.tokenizer |
|
self.data_service = data_service |
|
self.pdf_service = pdf_service |
|
self.faq_service = faq_service |
|
self.conversation_manager = ConversationManager() |
|
|
|
async def search_all_sources( |
|
self, |
|
query: str, |
|
top_k: int = 3 |
|
) -> Dict[str, List[Dict[str, Any]]]: |
|
"""Search across all available data sources""" |
|
try: |
|
print("-----------------------------") |
|
print("starting searches .... ") |
|
|
|
|
|
products = await self.data_service.search(query, top_k) |
|
pdfs = await self.pdf_service.search(query, top_k) |
|
faqs = await self.faq_service.search_faqs(query, top_k) |
|
|
|
results = { |
|
'products': products or [], |
|
'documents': pdfs or [], |
|
'faqs': faqs or [] |
|
} |
|
|
|
print("Search results:", results) |
|
return results |
|
|
|
except Exception as e: |
|
logger.error(f"Error searching sources: {e}") |
|
return {'products': [], 'documents': [], 'faqs': []} |
|
|
|
def construct_system_prompt(self, context: str) -> str: |
|
"""Constructs the system message.""" |
|
return ( |
|
"You are a friendly bot named: Oma Erna, specializing in Bofrost products and content. Use only the context from this prompt. " |
|
"Return comprehensive German answers. If possible add product IDs from context. Do not make up information. The context is is truth. " |
|
"Use the following context (product descriptions and information) for answers:\n\n" |
|
f"{context}\n\n" |
|
) |
|
|
|
def construct_prompt( |
|
self, |
|
user_input: str, |
|
context: str, |
|
chat_history: List[Tuple[str, str]], |
|
max_history_turns: int = 1 |
|
) -> str: |
|
"""Constructs the full prompt.""" |
|
system_message = self.construct_system_prompt(context) |
|
prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>" |
|
|
|
for user_msg, assistant_msg in chat_history[-max_history_turns:]: |
|
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>" |
|
prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>" |
|
|
|
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|>" |
|
prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
|
|
return prompt |
|
|
|
def build_context( |
|
self, |
|
search_results: Dict[str, List[Dict[str, Any]]], |
|
chat_history: List[Dict[str, Any]] |
|
) -> str: |
|
"""Build context for the model from search results and chat history""" |
|
context_parts = [] |
|
|
|
|
|
if search_results.get('products'): |
|
products = search_results['products'][:2] |
|
for product in products: |
|
context_parts.append( |
|
f"Produkt: {product['Name']}\n" |
|
f"Beschreibung: {product['Description']}\n" |
|
f"Preis: {product['Price']}€\n" |
|
f"Kategorie: {product['ProductCategory']}" |
|
) |
|
|
|
|
|
if search_results.get('documents'): |
|
docs = search_results['documents'][:2] |
|
for doc in docs: |
|
context_parts.append( |
|
f"Aus Dokument '{doc['source']}' (Seite {doc['page']}):\n" |
|
f"{doc['text']}" |
|
) |
|
|
|
|
|
if search_results.get('faqs'): |
|
faqs = search_results['faqs'][:2] |
|
for faq in faqs: |
|
context_parts.append( |
|
f"FAQ:\n" |
|
f"Frage: {faq['question']}\n" |
|
f"Antwort: {faq['answer']}" |
|
) |
|
|
|
|
|
if chat_history: |
|
print("--- historiy--- ") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("\n\n".join(context_parts)) |
|
return "\n\n".join(context_parts) |
|
|
|
async def chat( |
|
self, |
|
user_input: str, |
|
session_id: Any, |
|
max_length: int = 8000 |
|
) -> Tuple[str, List[Tuple[str, str]], Dict[str, List[Dict[str, Any]]]]: |
|
"""Main chat method that coordinates the entire conversation flow.""" |
|
try: |
|
if not isinstance(session_id, str): |
|
session_id = str(session_id) |
|
|
|
chat_history_raw = self.conversation_manager.get_history(session_id) |
|
chat_history = [ |
|
(entry['user_input'], entry['response']) for entry in chat_history_raw |
|
] |
|
|
|
search_results = await self.search_all_sources(user_input) |
|
print(search_results) |
|
|
|
context = self.build_context(search_results, chat_history_raw) |
|
prompt = self.construct_prompt(user_input, context, chat_history) |
|
response = self.generate_response(prompt, max_length) |
|
|
|
self.conversation_manager.add_interaction( |
|
session_id, |
|
user_input, |
|
response, |
|
{'search_results': search_results} |
|
) |
|
|
|
formatted_history = [ |
|
(entry['user_input'], entry['response']) |
|
for entry in self.conversation_manager.get_history(session_id) |
|
] |
|
|
|
return response, formatted_history, search_results |
|
|
|
except Exception as e: |
|
logger.error(f"Error in chat: {e}") |
|
raise |
|
|
|
def generate_response( |
|
self, |
|
prompt: str, |
|
max_length: int = 1000 |
|
) -> str: |
|
"""Generate response using the language model""" |
|
try: |
|
print(prompt) |
|
inputs = self.tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
truncation=True, |
|
max_length=4096 |
|
).to(settings.DEVICE) |
|
|
|
outputs = self.model.generate( |
|
**inputs, |
|
max_length=max_length, |
|
num_return_sequences=1, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True, |
|
no_repeat_ngram_size=3, |
|
early_stopping=False |
|
) |
|
|
|
input_ids = self.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=4096).to("cpu") |
|
|
|
response = self.tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True) |
|
|
|
|
|
response = response.replace("<|assistant|>", "").strip() |
|
|
|
return response.strip() |
|
|
|
except Exception as e: |
|
logger.error(f"Error generating response: {e}") |
|
raise |