Create model_manager.py
Browse files- services/model_manager.py +78 -0
services/model_manager.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model_manager.py
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from llama_cpp import Llama
|
5 |
+
from typing import Optional, Dict
|
6 |
+
import logging
|
7 |
+
from functools import lru_cache
|
8 |
+
from config.config import GenerationConfig, ModelConfig
|
9 |
+
|
10 |
+
|
11 |
+
class ModelManager:
|
12 |
+
def __init__(self, device: Optional[str] = None):
|
13 |
+
self.logger = logging.getLogger(__name__)
|
14 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
self.models: Dict[str, Any] = {}
|
16 |
+
self.tokenizers: Dict[str, Any] = {}
|
17 |
+
|
18 |
+
def load_model(self, model_id: str, model_path: str, model_type: str, config: ModelConfig) -> None:
|
19 |
+
"""Load a model with specified configuration."""
|
20 |
+
try:
|
21 |
+
##could be differnt models, so we can use a factory pattern to load the correct model - textgen, llama, gguf, text2video, text2image etc.
|
22 |
+
if model_type == "llama":
|
23 |
+
self.tokenizers[model_id] = AutoTokenizer.from_pretrained(
|
24 |
+
model_path,
|
25 |
+
padding_side='left',
|
26 |
+
trust_remote_code=True,
|
27 |
+
**config.tokenizer_kwargs
|
28 |
+
)
|
29 |
+
if self.tokenizers[model_id].pad_token is None:
|
30 |
+
self.tokenizers[model_id].pad_token = self.tokenizers[model_id].eos_token
|
31 |
+
|
32 |
+
self.models[model_id] = AutoModelForCausalLM.from_pretrained(
|
33 |
+
model_path,
|
34 |
+
device_map="auto",
|
35 |
+
trust_remote_code=True,
|
36 |
+
**config.model_kwargs
|
37 |
+
)
|
38 |
+
elif model_type == "gguf":
|
39 |
+
#TODO load the model first from the cache, if not found load the model and save it in the cache
|
40 |
+
#from huggingface_hub import hf_hub_download
|
41 |
+
#prm_model_path = hf_hub_download(
|
42 |
+
# repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
|
43 |
+
# filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
|
44 |
+
#)
|
45 |
+
|
46 |
+
|
47 |
+
self.models[model_id] = self._load_quantized_model(
|
48 |
+
model_path,
|
49 |
+
**config.quantization_kwargs
|
50 |
+
)
|
51 |
+
except Exception as e:
|
52 |
+
self.logger.error(f"Failed to load model {model_id}: {str(e)}")
|
53 |
+
raise
|
54 |
+
|
55 |
+
|
56 |
+
def unload_model(self, model_id: str) -> None:
|
57 |
+
"""Unload a model and free resources."""
|
58 |
+
if model_id in self.models:
|
59 |
+
del self.models[model_id]
|
60 |
+
if model_id in self.tokenizers:
|
61 |
+
del self.tokenizers[model_id]
|
62 |
+
torch.cuda.empty_cache()
|
63 |
+
|
64 |
+
def _load_quantized_model(self, model_path: str, **kwargs) -> Llama:
|
65 |
+
"""Load a quantized GGUF model."""
|
66 |
+
try:
|
67 |
+
n_gpu_layers = -1 if torch.cuda.is_available() else 0
|
68 |
+
model = Llama(
|
69 |
+
model_path=model_path,
|
70 |
+
n_ctx=kwargs.get('n_ctx', 2048),
|
71 |
+
n_batch=kwargs.get('n_batch', 512),
|
72 |
+
n_gpu_layers=kwargs.get('n_gpu_layers', n_gpu_layers),
|
73 |
+
verbose=kwargs.get('verbose', False)
|
74 |
+
)
|
75 |
+
return model
|
76 |
+
except Exception as e:
|
77 |
+
self.logger.error(f"Failed to load GGUF model: {str(e)}")
|
78 |
+
raise
|