Update services/model_service.py
Browse files- services/model_service.py +3 -14
services/model_service.py
CHANGED
@@ -25,16 +25,7 @@ class ModelService:
|
|
25 |
# Load tokenizer
|
26 |
self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME)
|
27 |
|
28 |
-
|
29 |
-
config = LlamaConfig.from_pretrained(settings.MODEL_NAME)
|
30 |
-
|
31 |
-
# Check and update rope_scaling if necessary
|
32 |
-
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
33 |
-
logger.info("Updating rope_scaling in configuration...")
|
34 |
-
config.rope_scaling = {
|
35 |
-
"type": "linear", # Ensure this matches the expected type
|
36 |
-
"factor": config.rope_scaling.get('factor', 1.0) # Use existing factor or default to 1.0
|
37 |
-
}
|
38 |
|
39 |
# Check quantization type and adjust accordingly
|
40 |
if config.get('quantization_config', {}).get('type', '') == 'compressed-tensors':
|
@@ -43,11 +34,9 @@ class ModelService:
|
|
43 |
|
44 |
# Load model with the updated configuration
|
45 |
self.model = AutoModelForCausalLM.from_pretrained(
|
46 |
-
settings.MODEL_NAME,
|
47 |
-
model_type = "llama",
|
48 |
torch_dtype=torch.float16 if settings.DEVICE == "cuda" else torch.float32,
|
49 |
-
device_map="auto" if settings.DEVICE == "cuda" else None
|
50 |
-
config=config
|
51 |
)
|
52 |
|
53 |
# Load sentence embedder
|
|
|
25 |
# Load tokenizer
|
26 |
self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME)
|
27 |
|
28 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Check quantization type and adjust accordingly
|
31 |
if config.get('quantization_config', {}).get('type', '') == 'compressed-tensors':
|
|
|
34 |
|
35 |
# Load model with the updated configuration
|
36 |
self.model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
settings.MODEL_NAME,
|
|
|
38 |
torch_dtype=torch.float16 if settings.DEVICE == "cuda" else torch.float32,
|
39 |
+
device_map="auto" if settings.DEVICE == "cuda" else None
|
|
|
40 |
)
|
41 |
|
42 |
# Load sentence embedder
|