Update services/chat_service.py
Browse files- services/chat_service.py +71 -70
services/chat_service.py
CHANGED
@@ -67,29 +67,78 @@ class ChatService:
|
|
67 |
)
|
68 |
|
69 |
def construct_prompt(
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
async def chat(
|
95 |
self,
|
@@ -174,54 +223,6 @@ class ChatService:
|
|
174 |
logger.error(f"Error searching sources: {e}")
|
175 |
return {'products': [], 'documents': [], 'faqs': []}
|
176 |
|
177 |
-
def build_context(
|
178 |
-
self,
|
179 |
-
search_results: Dict[str, List[Dict[str, Any]]],
|
180 |
-
chat_history: List[Dict[str, Any]]
|
181 |
-
) -> str:
|
182 |
-
"""Build context for the model from search results and chat history"""
|
183 |
-
context_parts = []
|
184 |
-
|
185 |
-
# Add relevant products
|
186 |
-
if search_results.get('products'):
|
187 |
-
products = search_results['products'][:2] # Limit to top 2 products
|
188 |
-
for product in products:
|
189 |
-
context_parts.append(
|
190 |
-
f"Produkt: {product['Name']}\n"
|
191 |
-
f"Beschreibung: {product['Description']}\n"
|
192 |
-
f"Preis: {product['Price']}€\n"
|
193 |
-
f"Kategorie: {product['ProductCategory']}"
|
194 |
-
)
|
195 |
-
|
196 |
-
# Add relevant PDF content
|
197 |
-
if search_results.get('documents'):
|
198 |
-
docs = search_results['documents'][:2]
|
199 |
-
for doc in docs:
|
200 |
-
context_parts.append(
|
201 |
-
f"Aus Dokument '{doc['source']}' (Seite {doc['page']}):\n"
|
202 |
-
f"{doc['text']}"
|
203 |
-
)
|
204 |
-
|
205 |
-
# Add relevant FAQs
|
206 |
-
if search_results.get('faqs'):
|
207 |
-
faqs = search_results['faqs'][:2]
|
208 |
-
for faq in faqs:
|
209 |
-
context_parts.append(
|
210 |
-
f"FAQ:\n"
|
211 |
-
f"Frage: {faq['question']}\n"
|
212 |
-
f"Antwort: {faq['answer']}"
|
213 |
-
)
|
214 |
-
|
215 |
-
# Add recent chat history
|
216 |
-
if chat_history:
|
217 |
-
recent_history = chat_history[-3:] # Last 3 interactions
|
218 |
-
history_text = "\n".join(
|
219 |
-
f"User: {h['user_input']}\nAssistant: {h['response']}"
|
220 |
-
for h in recent_history
|
221 |
-
)
|
222 |
-
context_parts.append(f"Letzte Interaktionen:\n{history_text}")
|
223 |
-
|
224 |
-
return "\n\n".join(context_parts)
|
225 |
|
226 |
async def generate_response(
|
227 |
self,
|
|
|
67 |
)
|
68 |
|
69 |
def construct_prompt(
|
70 |
+
self,
|
71 |
+
user_input: str,
|
72 |
+
context: str,
|
73 |
+
chat_history: List[Tuple[str, str]],
|
74 |
+
max_history_turns: int = 1
|
75 |
+
) -> str:
|
76 |
+
"""Constructs the full prompt."""
|
77 |
+
# System message
|
78 |
+
system_message = self.construct_system_prompt(context)
|
79 |
+
|
80 |
+
# Start with system message
|
81 |
+
prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>"
|
82 |
+
|
83 |
+
# Add chat history (limit to last `max_history_turns` interactions)
|
84 |
+
for user_msg, assistant_msg in chat_history[-max_history_turns:]:
|
85 |
+
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>"
|
86 |
+
prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>"
|
87 |
+
|
88 |
+
# Add the current user input
|
89 |
+
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|>"
|
90 |
+
prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n"
|
91 |
+
|
92 |
+
return prompt
|
93 |
|
94 |
+
def build_context(
|
95 |
+
self,
|
96 |
+
search_results: Dict[str, List[Dict[str, Any]]],
|
97 |
+
chat_history: List[Dict[str, Any]]
|
98 |
+
) -> str:
|
99 |
+
"""Build context for the model from search results and chat history"""
|
100 |
+
context_parts = []
|
101 |
+
|
102 |
+
# Add relevant products
|
103 |
+
if search_results.get('products'):
|
104 |
+
products = search_results['products'][:2] # Limit to top 2 products
|
105 |
+
for product in products:
|
106 |
+
context_parts.append(
|
107 |
+
f"Produkt: {product['Name']}\n"
|
108 |
+
f"Beschreibung: {product['Description']}\n"
|
109 |
+
f"Preis: {product['Price']}€\n"
|
110 |
+
f"Kategorie: {product['ProductCategory']}"
|
111 |
+
)
|
112 |
+
|
113 |
+
# Add relevant PDF content
|
114 |
+
if search_results.get('documents'):
|
115 |
+
docs = search_results['documents'][:2]
|
116 |
+
for doc in docs:
|
117 |
+
context_parts.append(
|
118 |
+
f"Aus Dokument '{doc['source']}' (Seite {doc['page']}):\n"
|
119 |
+
f"{doc['text']}"
|
120 |
+
)
|
121 |
+
|
122 |
+
# Add relevant FAQs
|
123 |
+
if search_results.get('faqs'):
|
124 |
+
faqs = search_results['faqs'][:2]
|
125 |
+
for faq in faqs:
|
126 |
+
context_parts.append(
|
127 |
+
f"FAQ:\n"
|
128 |
+
f"Frage: {faq['question']}\n"
|
129 |
+
f"Antwort: {faq['answer']}"
|
130 |
+
)
|
131 |
+
|
132 |
+
# Add recent chat history
|
133 |
+
if chat_history:
|
134 |
+
recent_history = chat_history[-3:] # Last 3 interactions
|
135 |
+
history_text = "\n".join(
|
136 |
+
f"User: {h['user_input']}\nAssistant: {h['response']}"
|
137 |
+
for h in recent_history
|
138 |
+
)
|
139 |
+
context_parts.append(f"Letzte Interaktionen:\n{history_text}")
|
140 |
+
|
141 |
+
return "\n\n".join(context_parts)
|
142 |
|
143 |
async def chat(
|
144 |
self,
|
|
|
223 |
logger.error(f"Error searching sources: {e}")
|
224 |
return {'products': [], 'documents': [], 'faqs': []}
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
async def generate_response(
|
228 |
self,
|