Chris4K commited on
Commit
26a4f28
·
verified ·
1 Parent(s): b6c97f4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -1
app.py CHANGED
@@ -179,7 +179,7 @@ class BaseGenerator(ABC):
179
  self.cache = ResponseCache(cache_size)
180
  self.batch_processor = BatchProcessor(max_batch_size)
181
  self.health_check = HealthCheck()
182
- self.tokenizer = self.model_manager.tokenizers[model_name]
183
  #self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
184
  self.default_config = default_generation_config or GenerationConfig()
185
  self.model_config = model_config or ModelConfig()
@@ -413,9 +413,24 @@ class LlamaGenerator(BaseGenerator):
413
  model_config: Optional[ModelConfig] = None,
414
  cache_size: int = 1000,
415
  max_batch_size: int = 32,
 
416
  # self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
417
 
418
  ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419
  super().__init__(
420
  llama_model_name,
421
  device,
 
179
  self.cache = ResponseCache(cache_size)
180
  self.batch_processor = BatchProcessor(max_batch_size)
181
  self.health_check = HealthCheck()
182
+ # self.tokenizer = self.model_manager.tokenizers[model_name]
183
  #self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
184
  self.default_config = default_generation_config or GenerationConfig()
185
  self.model_config = model_config or ModelConfig()
 
413
  model_config: Optional[ModelConfig] = None,
414
  cache_size: int = 1000,
415
  max_batch_size: int = 32,
416
+ self.tokenizer = self.load_tokenizer(llama_model_name)
417
  # self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
418
 
419
  ):
420
+
421
+ #self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
422
+
423
+ def load_model(self, model_name: str):
424
+ # Code to load your model, e.g., Hugging Face's transformers library
425
+ from transformers import AutoModelForCausalLM
426
+ return AutoModelForCausalLM.from_pretrained(model_name)
427
+
428
+ def load_tokenizer(self, model_name: str):
429
+ # Load the tokenizer associated with the model
430
+ from transformers import AutoTokenizer
431
+ return AutoTokenizer.from_pretrained(model_name)
432
+
433
+
434
  super().__init__(
435
  llama_model_name,
436
  device,