Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,318 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
from
|
4 |
-
|
5 |
-
from
|
6 |
-
from services.model_service import ModelService
|
7 |
-
from services.pdf_service import PDFService
|
8 |
-
from services.data_service import DataService
|
9 |
-
from services.faq_service import FAQService
|
10 |
-
from auth.auth_handler import get_api_key
|
11 |
-
from models.base_models import UserInput, SearchQuery
|
12 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Add CORS middleware
|
19 |
app.add_middleware(
|
@@ -24,165 +323,99 @@ app.add_middleware(
|
|
24 |
allow_headers=["*"],
|
25 |
)
|
26 |
|
|
|
|
|
27 |
|
28 |
-
# Index URLs on app startup
|
29 |
@app.on_event("startup")
|
30 |
-
async def
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Configure logging
|
35 |
-
logging.basicConfig(
|
36 |
-
level=logging.INFO,
|
37 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
38 |
-
handlers=[
|
39 |
-
logging.FileHandler('chatbot.log'),
|
40 |
-
logging.StreamHandler()
|
41 |
-
]
|
42 |
-
)
|
43 |
-
logger = logging.getLogger(__name__)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# Initialize services
|
48 |
-
model_service = ModelService()
|
49 |
-
data_service = DataService(model_service)
|
50 |
-
pdf_service = PDFService(model_service)
|
51 |
-
faq_service = FAQService(model_service)
|
52 |
-
chat_service = ChatService(model_service, data_service, pdf_service, faq_service)
|
53 |
-
|
54 |
-
import math
|
55 |
-
from fastapi.responses import JSONResponse
|
56 |
-
|
57 |
-
# Helper function to sanitize data
|
58 |
-
def sanitize_response(data):
|
59 |
-
if isinstance(data, dict):
|
60 |
-
return {k: sanitize_response(v) for k, v in data.items()}
|
61 |
-
elif isinstance(data, list):
|
62 |
-
return [sanitize_response(item) for item in data]
|
63 |
-
elif isinstance(data, float) and (math.isnan(data) or math.isinf(data)):
|
64 |
-
return None # Replace NaN/Infinity with None or another default value
|
65 |
-
return data
|
66 |
-
|
67 |
-
@app.post("/api/chat")
|
68 |
-
async def chat_endpoint(
|
69 |
-
background_tasks: BackgroundTasks,
|
70 |
-
user_input: UserInput,
|
71 |
-
api_key: str = Depends(get_api_key)
|
72 |
-
):
|
73 |
try:
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
)
|
79 |
-
|
80 |
-
# Build the response dictionary
|
81 |
-
response_data = {
|
82 |
-
"status": "success",
|
83 |
-
"response": response,
|
84 |
-
"chat_history": updated_history,
|
85 |
-
"search_results": search_results
|
86 |
-
}
|
87 |
-
|
88 |
-
# Sanitize the response to ensure JSON compliance
|
89 |
-
sanitized_data = sanitize_response(response_data)
|
90 |
-
|
91 |
-
# Return the sanitized response
|
92 |
-
return JSONResponse(content=sanitized_data)
|
93 |
-
|
94 |
except Exception as e:
|
95 |
-
|
96 |
-
|
97 |
-
raise HTTPException(status_code=500, detail="An internal server error occurred.")
|
98 |
-
|
99 |
|
100 |
-
@app.post("/
|
101 |
-
async def
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
try:
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
#
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
except Exception as e:
|
114 |
-
logger.error(f"Error in search endpoint: {e}")
|
115 |
raise HTTPException(status_code=500, detail=str(e))
|
116 |
|
117 |
-
@app.
|
118 |
-
async def
|
119 |
-
|
120 |
-
|
121 |
-
):
|
122 |
try:
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
submit_btn = gr.Button("Senden", variant="primary")
|
149 |
-
clear_btn = gr.Button("Chat löschen")
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
formatted_history = [(item['user_input'], item['response']) for item in updated_history]
|
158 |
-
elif isinstance(updated_history[0], tuple):
|
159 |
-
formatted_history = [(item[0], item[1]) for item in updated_history]
|
160 |
-
else:
|
161 |
-
raise TypeError("Unexpected structure for updated_history")
|
162 |
-
#formatted_history = [(item['user_input'], item['response']) for item in updated_history]
|
163 |
-
return formatted_history, updated_history, search_results
|
164 |
-
|
165 |
-
|
166 |
-
submit_btn.click(
|
167 |
-
respond,
|
168 |
-
inputs=[user_input, chat_history],
|
169 |
-
outputs=[chat_display, chat_history, product_info]
|
170 |
-
)
|
171 |
-
|
172 |
-
clear_btn.click(
|
173 |
-
lambda: ([], [], None),
|
174 |
-
outputs=[chat_display, chat_history, product_info]
|
175 |
-
)
|
176 |
-
|
177 |
-
demo.queue()
|
178 |
-
return demo
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
import uvicorn
|
182 |
-
|
183 |
-
# Create and launch Gradio interface
|
184 |
-
demo = create_gradio_interface()
|
185 |
-
demo.launch(server_name="0.0.0.0", server_port=8080)
|
186 |
-
|
187 |
-
# Start FastAPI server
|
188 |
-
#uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from typing import List, Tuple, Optional, Dict, Any, Union
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from enum import Enum
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import logging
|
7 |
+
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
prm_model_path = hf_hub_download(
|
11 |
+
repo_id="tensorblock/Llama3.1-8B-PRM-Mistral-Data-GGUF",
|
12 |
+
filename="Llama3.1-8B-PRM-Mistral-Data-Q4_K_M.gguf"
|
13 |
+
)
|
14 |
+
|
15 |
+
class GenerationStrategy(str, Enum):
|
16 |
+
DEFAULT = "default"
|
17 |
+
MAJORITY_VOTING = "majority_voting"
|
18 |
+
BEST_OF_N = "best_of_n"
|
19 |
+
BEAM_SEARCH = "beam_search"
|
20 |
+
DVTS = "dvts"
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class GenerationConfig:
|
24 |
+
num_samples: int = 5
|
25 |
+
depth: int = 3
|
26 |
+
breadth: int = 2
|
27 |
+
max_history_turns: int = 3
|
28 |
+
max_new_tokens: int = 50
|
29 |
+
temperature: float = 0.7
|
30 |
+
top_p: float = 0.9
|
31 |
+
strategy: GenerationStrategy = GenerationStrategy.DEFAULT
|
32 |
+
|
33 |
+
class LlamaGenerator:
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
llama_model_name: str,
|
37 |
+
prm_model_path: str,
|
38 |
+
device: str = None,
|
39 |
+
default_generation_config: Optional[GenerationConfig] = None
|
40 |
+
):
|
41 |
+
"""Initialize the LlamaGenerator with specified models."""
|
42 |
+
self.logger = logging.getLogger(__name__)
|
43 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
44 |
+
self.default_config = default_generation_config or GenerationConfig()
|
45 |
+
|
46 |
+
self.logger.info(f"Initializing LlamaGenerator on device: {self.device}")
|
47 |
+
|
48 |
+
try:
|
49 |
+
self._initialize_models(llama_model_name, prm_model_path)
|
50 |
+
except Exception as e:
|
51 |
+
self.logger.error(f"Failed to initialize models: {str(e)}")
|
52 |
+
raise
|
53 |
+
|
54 |
+
def _initialize_models(self, llama_model_name: str, prm_model_path: str):
|
55 |
+
"""Initialize models with error handling and logging."""
|
56 |
+
# Initialize LLaMA model and tokenizer
|
57 |
+
self.llama_tokenizer = AutoTokenizer.from_pretrained(
|
58 |
+
llama_model_name,
|
59 |
+
padding_side='left',
|
60 |
+
trust_remote_code=True
|
61 |
+
)
|
62 |
+
if self.llama_tokenizer.pad_token is None:
|
63 |
+
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
|
64 |
+
|
65 |
+
self.llama_model = AutoModelForCausalLM.from_pretrained(
|
66 |
+
llama_model_name,
|
67 |
+
device_map="auto",
|
68 |
+
trust_remote_code=True
|
69 |
+
)
|
70 |
+
|
71 |
+
# Initialize PRM model
|
72 |
+
self.prm_model = self._load_quantized_model(prm_model_path)
|
73 |
+
|
74 |
+
# Enable token streaming
|
75 |
+
self.supports_streaming = hasattr(self.llama_model, "streamer")
|
76 |
+
|
77 |
+
async def generate_stream(
|
78 |
+
self,
|
79 |
+
prompt: str,
|
80 |
+
config: Optional[GenerationConfig] = None
|
81 |
+
) -> AsyncGenerator[str, None]:
|
82 |
+
"""Stream tokens as they're generated."""
|
83 |
+
if not self.supports_streaming:
|
84 |
+
raise NotImplementedError("This model doesn't support streaming")
|
85 |
+
|
86 |
+
config = config or self.default_config
|
87 |
+
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
88 |
+
|
89 |
+
async for token in self.llama_model.streamer(input_ids, **self._get_generation_kwargs(config)):
|
90 |
+
yield self.llama_tokenizer.decode([token])
|
91 |
+
|
92 |
+
def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
|
93 |
+
"""Get generation kwargs based on config."""
|
94 |
+
return {
|
95 |
+
"max_new_tokens": config.max_new_tokens,
|
96 |
+
"temperature": config.temperature,
|
97 |
+
"top_p": config.top_p,
|
98 |
+
"do_sample": config.temperature > 0,
|
99 |
+
}
|
100 |
+
|
101 |
+
def _load_quantized_model(self, model_path: str) -> Llama:
|
102 |
+
"""Load a quantized GGUF model using llama-cpp-python.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
model_path (str): Path to the GGUF model file
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
Llama: Loaded model instance
|
109 |
+
"""
|
110 |
+
try:
|
111 |
+
# Configure GPU layers if CUDA is available
|
112 |
+
n_gpu_layers = -1 if torch.cuda.is_available() else 0
|
113 |
+
|
114 |
+
# Load the model
|
115 |
+
model = Llama(
|
116 |
+
model_path=model_path,
|
117 |
+
n_ctx=2048, # Context window
|
118 |
+
n_batch=512, # Batch size for prompt processing
|
119 |
+
n_gpu_layers=n_gpu_layers, # Number of layers to offload to GPU
|
120 |
+
verbose=False
|
121 |
+
)
|
122 |
+
|
123 |
+
self.logger.info(f"Successfully loaded GGUF model from {model_path}")
|
124 |
+
return model
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
self.logger.error(f"Failed to load GGUF model: {str(e)}")
|
128 |
+
raise
|
129 |
+
|
130 |
+
def _score_with_prm(self, text: str) -> float:
|
131 |
+
"""Score text using the PRM model.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
text (str): Text to score
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
float: Model score
|
138 |
+
"""
|
139 |
+
try:
|
140 |
+
# For GGUF models, we need to use the proper scoring interface
|
141 |
+
result = self.prm_model.eval(text)
|
142 |
+
return result['logprobs'] # Or another appropriate scoring metric
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
self.logger.error(f"Error scoring text with PRM: {str(e)}")
|
146 |
+
return float('-inf') # Return very low score on error
|
147 |
+
|
148 |
+
|
149 |
+
def _construct_prompt(
|
150 |
+
self,
|
151 |
+
context: str,
|
152 |
+
user_input: str,
|
153 |
+
chat_history: List[Tuple[str, str]],
|
154 |
+
max_history_turns: int = 3
|
155 |
+
) -> str:
|
156 |
+
"""Construct a formatted prompt from the input components."""
|
157 |
+
system_message = f"Please assist based on the following context: {context}"
|
158 |
+
prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>"
|
159 |
+
|
160 |
+
for user_msg, assistant_msg in chat_history[-max_history_turns:]:
|
161 |
+
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|>"
|
162 |
+
prompt += f"<|start_header_id|>assistant<|end_header_id|>\n\n{assistant_msg}<|eot_id|>"
|
163 |
+
|
164 |
+
prompt += f"<|start_header_id|>user<|end_header_id|>\n\n{user_input}<|eot_id|>"
|
165 |
+
prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n"
|
166 |
+
return prompt
|
167 |
+
|
168 |
+
def generate(
|
169 |
+
self,
|
170 |
+
prompt: str,
|
171 |
+
model_kwargs: Dict[str, Any],
|
172 |
+
strategy: str = "default",
|
173 |
+
num_samples: int = 5,
|
174 |
+
depth: int = 3,
|
175 |
+
breadth: int = 2
|
176 |
+
) -> str:
|
177 |
+
"""Generate a response using the specified strategy.
|
178 |
+
|
179 |
+
Args:
|
180 |
+
prompt (str): The input prompt
|
181 |
+
model_kwargs (dict): Additional arguments for model.generate()
|
182 |
+
strategy (str): Generation strategy ('default', 'majority_voting', 'best_of_n', 'beam_search', 'dvts')
|
183 |
+
num_samples (int): Number of samples for applicable strategies
|
184 |
+
depth (int): Depth for DVTS strategy
|
185 |
+
breadth (int): Breadth for DVTS strategy
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
str: Generated response
|
189 |
+
"""
|
190 |
+
if strategy == "default":
|
191 |
+
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
192 |
+
output = self.llama_model.generate(input_ids, **model_kwargs)
|
193 |
+
return self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
|
194 |
+
|
195 |
+
elif strategy == "majority_voting":
|
196 |
+
outputs = []
|
197 |
+
for _ in range(num_samples):
|
198 |
+
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
199 |
+
output = self.llama_model.generate(input_ids, **model_kwargs)
|
200 |
+
outputs.append(self.llama_tokenizer.decode(output[0], skip_special_tokens=True))
|
201 |
+
return max(set(outputs), key=outputs.count)
|
202 |
+
|
203 |
+
elif strategy == "best_of_n":
|
204 |
+
scored_outputs = []
|
205 |
+
for _ in range(num_samples):
|
206 |
+
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
207 |
+
output = self.llama_model.generate(input_ids, **model_kwargs)
|
208 |
+
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
|
209 |
+
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
|
210 |
+
scored_outputs.append((response, score))
|
211 |
+
return max(scored_outputs, key=lambda x: x[1])[0]
|
212 |
+
|
213 |
+
elif strategy == "beam_search":
|
214 |
+
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
215 |
+
outputs = self.llama_model.generate(
|
216 |
+
input_ids,
|
217 |
+
num_beams=num_samples,
|
218 |
+
num_return_sequences=num_samples,
|
219 |
+
**model_kwargs
|
220 |
+
)
|
221 |
+
return [self.llama_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
222 |
+
|
223 |
+
elif strategy == "dvts":
|
224 |
+
results = []
|
225 |
+
for _ in range(breadth):
|
226 |
+
input_ids = self.llama_tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
227 |
+
output = self.llama_model.generate(input_ids, **model_kwargs)
|
228 |
+
response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
|
229 |
+
score = self.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
|
230 |
+
results.append((response, score))
|
231 |
+
|
232 |
+
for _ in range(depth - 1):
|
233 |
+
best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
|
234 |
+
for response, _ in best_responses:
|
235 |
+
input_ids = self.llama_tokenizer(response, return_tensors="pt").input_ids.to(self.device)
|
236 |
+
output = self.llama_model.generate(input_ids, **model_kwargs)
|
237 |
+
extended_response = self.llama_tokenizer.decode(output[0], skip_special_tokens=True)
|
238 |
+
score = self.prm_model(**self.llama_tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item()
|
239 |
+
results.append((extended_response, score))
|
240 |
+
return max(results, key=lambda x: x[1])[0]
|
241 |
+
|
242 |
+
else:
|
243 |
+
raise ValueError(f"Unknown strategy: {strategy}")
|
244 |
+
|
245 |
+
def generate_with_context(
|
246 |
+
self,
|
247 |
+
context: str,
|
248 |
+
user_input: str,
|
249 |
+
chat_history: List[Tuple[str, str]],
|
250 |
+
model_kwargs: Dict[str, Any],
|
251 |
+
max_history_turns: int = 3,
|
252 |
+
strategy: str = "default",
|
253 |
+
num_samples: int = 5,
|
254 |
+
depth: int = 3,
|
255 |
+
breadth: int = 2
|
256 |
+
) -> str:
|
257 |
+
"""Generate a response using context and chat history.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
context (str): Context for the conversation
|
261 |
+
user_input (str): Current user input
|
262 |
+
chat_history (List[Tuple[str, str]]): List of (user, assistant) message pairs
|
263 |
+
model_kwargs (dict): Additional arguments for model.generate()
|
264 |
+
max_history_turns (int): Maximum number of history turns to include
|
265 |
+
strategy (str): Generation strategy
|
266 |
+
num_samples (int): Number of samples for applicable strategies
|
267 |
+
depth (int): Depth for DVTS strategy
|
268 |
+
breadth (int): Breadth for DVTS strategy
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
str: Generated response
|
272 |
+
"""
|
273 |
+
prompt = self._construct_prompt(
|
274 |
+
context,
|
275 |
+
user_input,
|
276 |
+
chat_history,
|
277 |
+
max_history_turns
|
278 |
+
)
|
279 |
+
return self.generate(
|
280 |
+
prompt,
|
281 |
+
model_kwargs,
|
282 |
+
strategy,
|
283 |
+
num_samples,
|
284 |
+
depth,
|
285 |
+
breadth
|
286 |
+
)
|
287 |
+
|
288 |
+
######################
|
289 |
+
#########
|
290 |
+
#################
|
291 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
292 |
+
from fastapi.middleware.cors import CORSMiddleware
|
293 |
+
from pydantic import BaseModel, Field
|
294 |
+
from typing import List, Optional, Dict
|
295 |
import asyncio
|
296 |
+
import uuid
|
297 |
+
from datetime import datetime
|
298 |
+
import json
|
299 |
+
|
300 |
+
class ChatMessage(BaseModel):
|
301 |
+
role: str = Field(..., description="Role of the message sender (user/assistant)")
|
302 |
+
content: str = Field(..., description="Content of the message")
|
303 |
+
|
304 |
+
class GenerationRequest(BaseModel):
|
305 |
+
context: Optional[str] = Field(None, description="Context for the conversation")
|
306 |
+
messages: List[ChatMessage] = Field(..., description="Chat history")
|
307 |
+
config: Optional[Dict] = Field(None, description="Generation configuration")
|
308 |
+
stream: bool = Field(False, description="Whether to stream the response")
|
309 |
|
310 |
+
class GenerationResponse(BaseModel):
|
311 |
+
id: str = Field(..., description="Generation ID")
|
312 |
+
content: str = Field(..., description="Generated content")
|
313 |
+
created_at: datetime = Field(default_factory=datetime.now)
|
314 |
+
|
315 |
+
app = FastAPI(title="LLaMA Generation Service")
|
316 |
|
317 |
# Add CORS middleware
|
318 |
app.add_middleware(
|
|
|
323 |
allow_headers=["*"],
|
324 |
)
|
325 |
|
326 |
+
# Store generator instance
|
327 |
+
generator = None
|
328 |
|
|
|
329 |
@app.on_event("startup")
|
330 |
+
async def startup_event():
|
331 |
+
global generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
try:
|
333 |
+
generator = LlamaGenerator(
|
334 |
+
llama_model_name="meta-llama/Llama-3.2-1B-Instruct",
|
335 |
+
prm_model_path=prm_model_path,
|
336 |
+
default_generation_config=GenerationConfig(
|
337 |
+
max_new_tokens=100,
|
338 |
+
temperature=0.7
|
339 |
+
)
|
340 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
except Exception as e:
|
342 |
+
print(f"Failed to initialize generator: {str(e)}")
|
343 |
+
raise
|
|
|
|
|
344 |
|
345 |
+
@app.post("/generate", response_model=GenerationResponse)
|
346 |
+
async def generate(request: GenerationRequest):
|
347 |
+
if not generator:
|
348 |
+
raise HTTPException(status_code=503, detail="Generator not initialized")
|
349 |
+
|
350 |
try:
|
351 |
+
# Format chat history
|
352 |
+
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
|
353 |
+
user_input = request.messages[-1].content
|
354 |
+
|
355 |
+
# Create generation config
|
356 |
+
config = GenerationConfig(**request.config) if request.config else None
|
357 |
+
|
358 |
+
# Generate response
|
359 |
+
response = await asyncio.to_thread(
|
360 |
+
generator.generate_with_context,
|
361 |
+
context=request.context or "",
|
362 |
+
user_input=user_input,
|
363 |
+
chat_history=chat_history,
|
364 |
+
model_kwargs={}, # Add any model-specific kwargs here
|
365 |
+
config=config
|
366 |
+
)
|
367 |
+
|
368 |
+
return GenerationResponse(
|
369 |
+
id=str(uuid.uuid4()),
|
370 |
+
content=response
|
371 |
+
)
|
372 |
except Exception as e:
|
|
|
373 |
raise HTTPException(status_code=500, detail=str(e))
|
374 |
|
375 |
+
@app.websocket("/generate/stream")
|
376 |
+
async def generate_stream(websocket):
|
377 |
+
await websocket.accept()
|
378 |
+
|
|
|
379 |
try:
|
380 |
+
while True:
|
381 |
+
# Receive and parse request
|
382 |
+
request_data = await websocket.receive_text()
|
383 |
+
request = GenerationRequest.parse_raw(request_data)
|
384 |
+
|
385 |
+
# Format chat history
|
386 |
+
chat_history = [(msg.role, msg.content) for msg in request.messages[:-1]]
|
387 |
+
user_input = request.messages[-1].content
|
388 |
+
|
389 |
+
# Create generation config
|
390 |
+
config = GenerationConfig(**request.config) if request.config else None
|
391 |
+
|
392 |
+
# Stream response
|
393 |
+
async for token in generator.generate_stream(
|
394 |
+
prompt=generator._construct_prompt(
|
395 |
+
context=request.context or "",
|
396 |
+
user_input=user_input,
|
397 |
+
chat_history=chat_history
|
398 |
+
),
|
399 |
+
config=config
|
400 |
+
):
|
401 |
+
await websocket.send_text(json.dumps({
|
402 |
+
"token": token,
|
403 |
+
"finished": False
|
404 |
+
}))
|
405 |
|
406 |
+
# Send finished message
|
407 |
+
await websocket.send_text(json.dumps({
|
408 |
+
"token": "",
|
409 |
+
"finished": True
|
410 |
+
}))
|
|
|
|
|
411 |
|
412 |
+
except Exception as e:
|
413 |
+
await websocket.send_text(json.dumps({
|
414 |
+
"error": str(e)
|
415 |
+
}))
|
416 |
+
finally:
|
417 |
+
await websocket.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
if __name__ == "__main__":
|
420 |
import uvicorn
|
421 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
|
|