Update services/model_service.py
Browse files- services/model_service.py +14 -11
services/model_service.py
CHANGED
@@ -21,20 +21,22 @@ class ModelService:
|
|
21 |
self._initialized = True
|
22 |
self._load_models()
|
23 |
|
24 |
-
@lru_cache(maxsize=1)
|
25 |
def _load_models(self):
|
26 |
try:
|
27 |
# Load tokenizer
|
28 |
self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME)
|
29 |
-
|
30 |
-
# Load model configuration
|
31 |
config = LlamaConfig.from_pretrained(settings.MODEL_NAME)
|
32 |
-
|
33 |
-
#
|
34 |
-
if hasattr(config, "rope_scaling"):
|
35 |
-
logger.info("
|
36 |
-
config.rope_scaling =
|
37 |
-
|
|
|
|
|
|
|
38 |
# Load model with the updated configuration
|
39 |
self.model = AutoModelForCausalLM.from_pretrained(
|
40 |
settings.MODEL_NAME,
|
@@ -42,13 +44,14 @@ class ModelService:
|
|
42 |
device_map="auto" if settings.DEVICE == "cuda" else None,
|
43 |
config=config
|
44 |
)
|
45 |
-
|
46 |
# Load sentence embedder
|
47 |
self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL)
|
48 |
-
|
49 |
except Exception as e:
|
50 |
logger.error(f"Error loading models: {e}")
|
51 |
raise
|
52 |
|
|
|
53 |
def get_models(self):
|
54 |
return self.tokenizer, self.model, self.embedder
|
|
|
21 |
self._initialized = True
|
22 |
self._load_models()
|
23 |
|
|
|
24 |
def _load_models(self):
|
25 |
try:
|
26 |
# Load tokenizer
|
27 |
self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME)
|
28 |
+
|
29 |
+
# Load model configuration
|
30 |
config = LlamaConfig.from_pretrained(settings.MODEL_NAME)
|
31 |
+
|
32 |
+
# Check and update rope_scaling if necessary
|
33 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
34 |
+
logger.info("Updating rope_scaling in configuration...")
|
35 |
+
config.rope_scaling = {
|
36 |
+
"type": "linear", # Ensure this matches the expected type
|
37 |
+
"factor": config.rope_scaling.get('factor', 1.0) # Use existing factor or default to 1.0
|
38 |
+
}
|
39 |
+
|
40 |
# Load model with the updated configuration
|
41 |
self.model = AutoModelForCausalLM.from_pretrained(
|
42 |
settings.MODEL_NAME,
|
|
|
44 |
device_map="auto" if settings.DEVICE == "cuda" else None,
|
45 |
config=config
|
46 |
)
|
47 |
+
|
48 |
# Load sentence embedder
|
49 |
self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL)
|
50 |
+
|
51 |
except Exception as e:
|
52 |
logger.error(f"Error loading models: {e}")
|
53 |
raise
|
54 |
|
55 |
+
|
56 |
def get_models(self):
|
57 |
return self.tokenizer, self.model, self.embedder
|